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Abstract

This paper gives a summary of published conditions needed
for a priority function to return bounded-optimal solutions
when not performing re-expansions of previously expanded
states in best-first search.

Introduction

While Weighted A* (Pohl 1970) is a well-studied algorithm
for suboptimal search, the question of whether Weighted A*
should re-expand states when a shorter path is found has not
always been clearly described in the literature. The original
paper does not require updating the cost of states already
found on open, much less re-expanding them when a shorter
path is found. However, later work (Pearl 1984) describes
A* as always re-opening states, and then Weighted A* as
A* with a different priority function, implying that it would
re-open and re-expand states if shorter paths were found.
Later work (Likhachev, Gordon, and Thrun 2003; Ebendt
and Drechsler 2009) clarifies that Weighted A* does not
need to re-open states to find bounded-optimal solutions.

Our recent work (Chen and Sturtevant 2021) character-
ized the necessary and sufficient conditions for a priority
function to find solutions with bounded-optimal cost when
states are not re-expanded in best-first search. This research
abstract summarizes these results.

Necessary and Sufficient Conditions

Assume that a best-first search is guided by the priority func-
tion f(u) = ®(h(u),g(u)), where ®(x,y) is a continuous
function R? — R. We assume that the goal is to find a solu-
tion path with cost < B(C*), where B : R — R is a given
bounding function that satisfies Vo > 0, B(x) > z.

& describes a surface. States on the surface with the same
value of ® have the same priority. We can visualize these
states by isolines on the surface of @, as in Figure 1.

Then, we assume that ® has the following properties:

Property 1 For any given § > 0, ®(x + §,y) > ®(z,y),
O(z,y +9) > D(x,y).

Property 2 Forany given 6 > 0, ®(x,y+9) < ®(z+4,y)
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Property 1 requires that if there are two states with same
h-cost, the one with lower g-cost will have lower priority.
For two states with same g-cost, the one with lower h-cost
will have lower priority.

Property 2 requires that if two states have the same g + £,
the one with lower g-cost will not have lower priority than
the one with higher g-cost, although they could have equal
priority (as in A*).

Property 3 &(z,0) = .

This property just sets the scale for ®. Other scales could
be used, but this particular property gives ® semantic mean-
ing: ® is a lower bound on the optimal solution cost through
a particular state. We always assume that Properties I to 3
hold. Given these properties, we can then relate the priority
function to the bounding function used in two ways.

Property 4 ®(z,0) < ®(0, B(x)), where B is the given
bounding function.
Property 5 ®(z,0) = ®(0, B(x)), where B is the given
bounding function.

Finally, we define the ®-inequality as ®(h(n),g(n)) <
g*(n) + h(n) for some state n.

If the ®-inequality holds for each state when it is ex-
panded, then a best-first search without state re-expansions
will return a solution that is bounded by B. The conditions

which are required for the ®-inequality to hold include:

1. If the heuristic is inconsistent, the ®-inequality is not
guaranteed to hold, and thus re-expansions are necessary.

2. If the heuristic is consistent, Property 6 (below) is both
a necessary and sufficient condition for best-first search
to find bounded-optimal solutions without re-expansions
when ¢ meets Property 5.

3. If the heuristic is consistent, and if & only meets Property
4, then Property 6 (below) is sufficient but not necessary
for best-first search to avoid re-expansions.

A heuristic is consistent on an undirected graph if
VYm,n,|h(n) — h(m)| < d(n,m). If this property holds
on a directed graph, we say the heuristic is strongly consis-
tent. A heuristic is then weakly consistent if Ym, n, h(n) <
d(n, m)+h(m). Otherwise the heuristic is inconsistent. The
following property is analogous to consistency of the heuris-
tic. We refer to this as the ® function being consistent.



_____ N

(a)

()

(d) (e)

Figure 1: The iso-lines of different ® functions. (a) w4+ (b) P ap (c) ©., (from (Chen and Sturtevant 2021)) (d) ®,, xp (€)

®,, xv. Red lines indicate free parameters.

Property 6 For a strongly consistent heuristic: for any
givend >0, P(x+6,y+96) < P(z,y) + 2§
For a weakly consistent heuristic: for any given 6 > 0,

O(r+6,y) < (z,y) +6

Stated informally, as long as ® does not change too
quickly, a best-first search will find bounded-optimal solu-
tions without re-expansions.

Priority Functions

Some priority functions have been previously described
(Chen and Sturtevant 2019); this work allows a broader
range of priority functions, including piecewise functions.
First, note that with these conditions, Weighted A*, when
written as f = g + wh (or ®(z,y) = y + wz) does not
meet the conditions required to avoid re-expansions, but this
is only because of Property 3. Weighted A* is estimating the
cost of the solution that will be found, not the optimal solu-
tion. When re-written as f = g/w+h it performs identically
and meets all conditions necessary to avoid re-expansions.
We now describe several other functions:
K—
Pap(z,y) = {x+ Yy ysK
r+y—y y=2kK

This priority function is defined for B, (x) = x+y, where
<y is a given constant (Valenzano et al. 2013). We recommend
setting K = max{h(start),v + 1}.

For linear bounds, possible functions include

ey

Jy+a y< 4orw
‘I)PUJXD('T7y) - {;(y+Kx) Iu(;ll”x <y @
1 K(w—1)
®Yt+ter yY< —J—
Qpuxv(z,y) = {If(y + ) Mm <y )
w K—w -

K is a free parameter, but we recommend setting K =
2w — 1. For pwXD (Equation 4), K > 2w — 1 violates
Property 6. Re-writing ®,,,, x p as a functions of f gives:

fowxp(n) = {9<”) + h(n) g(n) < h(n)
pw i(g(n) + (2w —1)h(n)) hn) < g(n(z‘)
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A selection of functions are illustrated in Figure 1. Of par-
ticular note is fp,, x p, which begins by searching optimally
(the isolines have slope of -1), and then switches to search-
ing with a weight of (2w — 1). When the number of states
with g(n) < h(n) is small, f,,xp is able to search with
a larger weight through much of the search, and thus can
have very good performance. These, and other functions, are
available in the literature (Chen and Sturtevant 2019, 2021).
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