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Abstract

Multi-Agent Path Finding (MAPF) is the problem of find-
ing collision-free paths for multiple agents. CBS is a lead-
ing optimal two-level MAPF solver whose low level plans
optimal paths for single agents and whose high level runs a
best-first search on a Constraint Tree (CT) to resolve the col-
lisions between the paths. ECBS, a bounded-suboptimal vari-
ant of CBS, speeds up CBS by reducing the number of col-
lisions that need to be resolved on the high level. It achieves
this by generating bounded-suboptimal paths with fewer col-
lisions with the paths of the other agents on the low level
and expanding bounded-suboptimal CT nodes that contain
fewer collisions on the high level. In this paper, we propose
Flexible ECBS (FECBS) that further reduces the number of
collisions that need to be resolved on the high level by us-
ing looser suboptimal bounds on the low level while still
providing bounded-suboptimal solutions. Instead of requir-
ing the cost of each path to be bounded-suboptimal, FECBS
requires only the overall cost of the paths to be bounded-
suboptimal, which gives us the freedom to distribute the cost
leeway among different agents according to their needs. Our
empirical results show that FECBS can solve more MAPF in-
stances than state-of-the-art ECBS variants within 5 minutes.

Multi-Agent Path Finding (MAPF)

MAPEF is the problem of finding collision-free paths on a
graph for k agents {ai,...,ax}, each with a start vertex
and a goal vertex. At every discretized timestep, an agent
can either move to an adjacent vertex or wait at its current
vertex. A path for agent a; is a sequence of vertices indi-
cating where agent a; is at each timestep, with its path cost
being the number of timesteps needed by agent a; to reach
its goal vertex and stay there. A collision occurs when two
agents occupy the same vertex or traverse the same edge at
the same timestep. A solution is a set of collision-free paths,
one for each agent. An optimal solution is a solution with
the minimum sum of costs (SoC) of the paths.

Enhanced Conflict-Based Search (ECBS)

Enhanced Conflict-Based Search (ECBS) (Barer et al. 2014)
is a two-level MAPF solver that is guaranteed to find a
bounded-suboptimal solution, i.e., a solution whose SoC is
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at most w - C*, where w is a user-specified suboptimality
factor and C* is the SoC of an optimal solution.

On the high level, ECBS searches a Constraint Tree (CT).
A CT node N contains a set of constraints (for resolving col-
lisions), a lower bound b;(IN) on the cost ¢} (V) of the op-
timal path of each agent a; that satisfies the constraints, and
a path with cost ¢;(N) < w - Ib;(N) for each agent a; that
satisfies the constraints. The root CT node contains no con-
straints. Given a collision between a pair paths in a CT node
chosen for expansion, ECBS resolves it by generating two
child CT nodes, each with an additional constraint that pro-
hibits one of the colliding agents from using the contested
vertex or edge at the colliding timestep. ECBS maintains an
open list OPENy (like A*) and a focal list FOCALy that
contains all CT nodes N in OPENy that satisfy

> ci(N) <w- LB,
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where LB = rnin]\feopENH{Ef:1 Ib;(N)} is guaranteed to
be a lower bound on C*. In each iteration, ECBS first up-
dates FOCALy and LB if necessary, then selects the CT
node in FOCALy with the smallest number of collisions,
and resolves one collision by expansion. ECBS terminates
when the selected CT node has no collisions. Since the SoC
of the paths of all CT nodes in FOCALy are at most w - LB,
ECBS always finds a solution with a SoC of at most w - C*.
When generating a CT node N with an additional con-
straint on agent a;, ECBS first sets the constraints, the lower
bounds, and the paths of all agents other than agent a; in IV
to those in its parent CT node and then finds the path and the
lower bound of agent a; in IV via a search on its low level.
On the low level, ECBS searches in the vertex-timestep
space to find both a bounded-suboptimal path for an agent
that satisfies the constraints and a lower bound on the
cost of its optimal path that satisfies the constraints. ECBS
maintains an open list OPENy (like A*) and a focal list
FOCAL_ that contains all nodes n in OPENy whose f-
values are at most the threshold w - fiin, where fiin =
ming,copen; {f(n)} is guaranteed to be a lower bound on
¢f(N). In each iteration, ECBS first updates FOCAL;, and
fmin if necessary and then expands the node in FOCALL
with the smallest number of collisions with the paths of the
other agents in CT node N. Since the f-values of all nodes in



FOCALL are at most w- fi,in,, ECBS always finds a bounded-
suboptimal path with cost ¢;(N) < w-1b;(IN), where 1b;(N)
is set to fiin When the low-level search terminates, that is,
Ib;(N) is a lower bound on ¢} (N).

Thus, for every agent a; in every CT node N, we have
¢i(N) < w - 1b;(N), which implies that

k k

=1 i=1

@

So, ECBS can always select a CT node from FOCALY in
each iteration on the high level because FOCALy contains at
least the CT node Npp = arg minNeOPENH{Zf;l Ib;(N)}
as Inequality (2) ensures that N p satisfies Inequality (1).

Flexible ECBS (FECBS)

On the low level, ECBS always finds a bounded-suboptimal
path for an agent that satisfies the constraints. However,
since the bounded suboptimality of ECBS is guaranteed by
only expanding CT nodes that satisfy Inequality (1) on the
high level, we can relax the bounded suboptimality on the
low level to further reduce the number of collisions that need
to be resolved on the high level. We thus propose Flexi-
ble ECBS (FECBS) that, rather than guaranteeing the cost
of each path to be bounded-suboptimal, only guarantees the
SoC of the paths in each CT node to be bounded-suboptimal,
that is, Inequality (2) to hold (otherwise, FOCALy might be
empty). We refer to the left-hand side of Inequality (2) as
the flex over the k agents. Intuitively, when FECBS replans
a path for agent a; in a CT node N, if the flex A;(N) =
W 4y Wby (N) =354, cir (N) over the other k— 1 agents
is positive, then it can satisfy Inequality (2) by finding a path
with a cost of at most w - Ib;(IN) + A;(N) even if the cost is
larger than the threshold w - Ib; (V) of ECBS.

Formally, FECBS differs from ECBS only in the thresh-
old of FOCALL . That is, when replanning the path of agent
a; in a CT node N whose parent CT node is N , FOCALL
contains all nodes in OPEN whose f-values are at most
w - max{ fimin, lb7(]\7)} + A;(N) (instead of w - finin). We
use max{ fimin, lbi(N )} instead of f,i, here because, other-
wise, the new threshold might be smaller than f,;,, which
can result in an empty low-level FOCAL. More specifically,
if FECBS found paths for some agents with costs larger
than w times their lower bounds at ancestor CT nodes of
N, then A;(N) might be negative and w - fuin + As(N)
might be smaller than f,;,. But, because of Inequality (2),
we knowthatAi(N) = w-zi,¢£ Wir(N) =>4 4 ci/(]Y) =
W S W0ir (V) = Sy e (V) = (w0 2 () -
S (W) —w 1y (N) +¢;(N) > —w-1by(N) +1b;(N).
Thus, our new threshold satisfies w - max{ finin, lbi(N )+
Ai(N) > w - max{ foin, Ib;(N)} —w - 1b;(N) + Ib;(N) =
w - max{ fmin — lbi(N), 0} + lbi(N) > max{ fmin —
Ib;(N),0} + Ib;(N) = max{ fmin, 1b:(N)} > fmin, which
ensures that FOCALy is never empty.

FECBS usually uses a larger threshold of FOCAL, than
ECBS, so, to avoid it finding paths that involve unnecessary
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Figure 1: Success rates of MAPF solvers on different maps.

waits or detours, we add a tie-breaking rule to FOCALy: If
multiple nodes in FOCAL have the same number of colli-
sions, we prefer one with the smallest f-value. When the low
level of FECBS terminates, FECBS assigns the found path to
agent a; in N and sets Ib; (N) to max{ fumin, 1b;(N)}. Ib;(N)
is a lower bound on ¢ (N) because Ib; (V) is a lower bound

on ¢f(N), which is at most ¢} (N) since the additional con-
straint on agent a; cannot make the cost of an optimal path
of agent a; smaller. Therefore, ¢;(N) < w-1b;(N)+A;(N),
which implies that Inequality (2) holds, that is, FOCALy is
never empty. Since FECBS plans paths for agents one at a
time at the root CT node and does not know the flex over the
other agents in advance, FECBS uses the new threshold only
when replanning paths at non-root CT nodes.

Empirical Evaluation

We use two 4-neighbor grids, namely a 32 x 32 grid map
with 20% blocked cells (Grid) and a 257 x 256 game map
(Den520d), and both the “even” and “random” scenarios
from the MAPF benchmark suite (Stern et al. 2019). We let
the suboptimality factor be 1.05 and 1.01 for the Grid and
Den520d maps, respectively. We use max{ fmin, [b;(N)}
as the threshold of FOCALL and the f-values to break ties
in our ECBS implementation (which sped up ECBS).

ECBS with the Rapid Randomized Restart (RR) tech-
nique (Cohen et al. 2018) is a state-of-the-art ECBS variant.
Given a user-specified number of runs #R and a time limit
T (in seconds), the RR technique restarts the search every
T /#R seconds. We denote ECBS and FECBS with the RR
technique as ECBS (RR) and FECBS (RR), respectively. We
define best #R as the value of #R in the set {5, 20, 30,40}
that leads to the highest success rate, i.e, the percentage of
MAPF instances solved within 5 minutes. Figure 1 shows
the success rates versus the number of agents. We only show
ECBS (RR) and FECBS (RR) with their best #R. FECBS
(RR) dominates on the Grid map, and FECBS dominates
on the Den520d map.
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