
Improving Continuous-time Conflict Based Search*

Anton Andreychuk,1, 2 Konstantin Yakovlev, 2, 3 Eli Boyarski, 4 Roni Stern 4, 5

1Peoples’ Friendship University of Russia (RUDN University)
2Federal Research Center for Computer Science and Control of Russian Academy of Sciences

3HSE University 4Ben-Gurion University of the Negev
5Palo Alto Research Center

andreychuk@mail.com, yakovlev@isa.ru, eli@boyar.ski, sternron@post.bgu.ac.il

Abstract

Multi-Agent Pathfinding (MAPF) is the problem of find-
ing paths for n agents in a graph such that each agent
reaches its goal vertex and the agents do not collide with
each other while moving along these paths. While differ-
ent problem statements of MAPF exist, we are focused on
MAPFR (Walker, Sturtevant, and Felner 2018), in which ac-
tions’ durations can be non-uniform, agents have geomet-
ric shapes, and time is continuous. Continuous-time conflict-
based search (CCBS) (Andreychuk et al. 2019) is a recently
proposed algorithm for finding optimal solutions to MAPFR

problems. In this work, we propose several improvements
to CCBS based on known improvements to the Conflict-
based search (CBS) algorithm (Sharon et al. 2015) for classi-
cal MAPF, namely Disjoint Splitting (DS), Prioritizing Con-
flicts (PC), and high-level heuristics. We evaluate the impact
of these improvements experimentally on both roadmaps and
grids. Our results show that CCBS with these improvements
is able to solve significantly more problems.

Continuous-Time Conflict Based Search
CCBS is a modification of CBS algorithm that can solve
MAPFR problems. To consider continuous time, CCBS rea-
sons over the time intervals, detects conflicts between timed
actions, and resolves conflicts by imposing constraints that
specify the time intervals in which the conflicting timed
actions can be moved to avoid the conflict. Formally, a
CCBS conflict is a tuple (ai, ti, aj , tj), specifying that the
timed action (ai, ti) of agent i has a conflict with the timed
action (aj , tj) of agent j. A CCBS constraint is a tuple
(i, ai, [ti, t

u
i )) specifying that agent i cannot perform ac-

tion ai in the time interval [ti, t
u
i ). The low-level planner

of CCBS is an adaptation of the Safe interval path plan-
ning (SIPP) algorithm (Phillips and Likhachev 2011).

Disjoint Splitting for CCBS
The first technique we migrate from CBS to CCBS is Dis-
joint Splitting (DS) (Li et al. 2019). CBS with DS (CBS-DS)

*This is the extended abstract for the same paper presented at
AAAI’21.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

considers positive and negative constraints. A negative con-
straint (i, x, k) states that agent imust not be at x at time step
k. A positive constraint (i, x, k) means that agent i must be
at x at time step k. When splitting a Constraint Tree (CT)
node N over a CBS conflict (i, j, x, k), CBS-DS chooses
one of the conflicting agents, say i, and generates two child
nodes, one with the negative constraint (i, x, k) and the other
with the positive constraint (i, x, k).

A CCBS constraint (i, ai, [ti, t
u
i )) can be stated formally

as follows: ∀t ∈ [ti, t
u
i ) : (ai, t) is not in a plan for agent i.

This is a negative constraint from a DS perspective. The
corresponding positive constraint is therefore the inverse:
∃t ∈ [ti, t

u
i ) : (ai, t) is in a plan for agent i. This mean

that agent i must perform ai at some moment of time
from the given interval. Thus a positive constraint in CCBS
is an action landmark, i.e., the action that must be per-
formed in any solution. Consider now an action landmark
l = (i,move(A,B), [t, tu)). In CCBS+DS there is an addi-
tional challenge for the low-level search: there may be in-
finite plans that satisfy l, i.e., reach A within [t, tu). Find-
ing only the least-cost plan might lead to incompleteness.
To guarantee completeness and optimality we need to find
the lowest-cost plan of reaching A for every safe interval of
A that overlaps with [t, tu). To solve this issue, we introduce
a generalized version of SIPP such that: (1) it accepts a set
of goal states, one per safe interval of A that overlaps with
[t, tu), and (2) it outputs a set of plans, one per goal state.
To each of these plans, we concatenate the action landmark
itself move(A,B). These plans may end in different safe in-
tervals in B, which then become distinct start states when
searching for a plan to get from B to the next landmark.

Prioritizing Conflicts
Prioritizing Conflicts (PC) (Boyarski et al. 2015) is the sec-
ond CBS enhancement we migrate to CCBS. PC is a heuris-
tic for choosing which conflict to resolve when expanding a
CT node. PC prioritizes conflicts by classifying each conflict
as either cardinal, semi-cardinal, non-cardinal. However, In
MAPFR, most conflicts are cardinal, i.e., the agents involved
in that conflicts are not able to find the paths that respect the
corresponding constraints and are of the same cost as be-
fore. To this end, we propose a generalized version of PC
that introduces a finer-grained prioritization of conflicts, by

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

145



introducing the notion of cost impact. For a CT nodeN with
a CCBS conflict Con = (ai, ti, aj , tj), let Ni and Nj be the
CCBS nodes obtained by splitting over this conflict, and let
δi be the difference between the cost of N and Ni. We de-
fine the cost impact of the conflictCon, denoted ∆(Con), as
min(δi, δj) Our adaptation of PC to CCBS chooses to split
a CT node on the conflict with the largest cost impact.

Heuristics for High-Level Search
Drawing from (Felner et al. 2018) we suggest two admis-
sible heuristics for CCBS. The first heuristic is based on
solving the linear programming problem (LPP) with n non-
negative variables x1, . . . xn, one for each agent. Each con-
flict Coni,j between agents i and j introduces the LPP con-
straint xi +xj ≥ ∆(Coni,j). The objective to be minimized
is
∑n

i=1 xi. The second heuristic follows the approach sug-
gested in (Felner et al. 2018). We, first, sort the conflicts
in descending order of their cost impact. Then, conflicts are
picked one by one in this order. After a conflict is picked, we
remove from the conflict list all conflicts that involve any of
the agents in this conflict. This continues until all the con-
flicts are either picked or removed. The resultant heuristic is
the sum of the cost impacts of the chosen conflicts. We ob-
served experimentally that the practical difference between
the described heuristics is negligible. In the experiments de-
scribed below we used the second heuristic.

Empirical Evaluation
The experiments were conducted on 23- and 25-connected
grids from the MovingAI MAPF benchmark (Stern
et al. 2019): a 16x16 empty grid, a warehouse-like
grid (warehouse-10-20-10-2-2), and a large game grid
(den520d). We also generated 3 roadmaps from den520d
grid with different density of nodes and edges: sparse, dense
and super-dense.1 All the agents were assumed to be disk-
shaped with

√
2/4 radius. The number of agents varied from

2 to 100. The time limit for each run was 30 seconds.
The results of all experiments are shown in Table 1. We

can see that in almost all cases the best results were ob-
tained by CCBS with all our enhancements (last column).
In certain setups, e.g., on sparse roadmap, the increase in
the number of solved instances is two-fold. Comparing the
results on grids with different neighborhood sizes, one can
notice the differences in benefits of PC and DS: increasing
the branching factor makes PC less effective and DS more
effective. This is explained by the fact that higher branching
factor means stronger pruning by positive constraints. The
similar trend is observed on the roadmaps. The impact from
adding the heuristic is not pronounced in terms of the num-
ber of solved instances. However, using heuristic leads to the
reduction of the CT-nodes expansions (up to 15-25%).

Conclusions and Future Work
In this work, we have proposed three improvements for the
CCBS algorithm. The first one, called DS, changes how

1Our implementation and all the raw results are available at:
github.com/PathPlanning/Continuous-CBS.

Basic PC DS DS+PC All
16x16 k3 392 455 506 587 595

warehouse k3 771 1135 901 1163 1163
den520d k3 667 766 729 809 810

16x16 k5 239 254 366 406 410
warehouse k5 633 821 846 917 925

den520d k5 296 301 472 451 451
sparse 239 389 329 468 476
dense 344 392 494 507 520

super-dense 211 206 367 309 309

Table 1: Number of problems solved within the time limit.

CT nodes are expanded by introducing positive and nega-
tive constraints. The second one, called PC, prioritizes the
conflicts to resolve by computing the cost of the solution
that resolves them. The last improvement is two admissi-
ble heuristics for the high-level search. In a comprehensive
experimental evaluation, we observed that using these im-
provements, CCBS can scale to solve much more problems
than the basic CCBS, solving in some cases almost twice as
many agents. Future work may consider adapting additional
improvements from CBS to CCBS, such as bipartite reduc-
tion (Walker, Sturtevant, and Felner 2020) and symmetry-
breaking techniques (Li et al. 2020).

References
Andreychuk, A.; Yakovlev, K.; Atzmon, D.; and Stern, R. 2019.
Multi-Agent Pathfinding with Continuous Time. In IJCAI 2019,
39–45.

Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Betzalel, O.; Tolpin,
D.; and Shimony, E. 2015. ICBS: Improved Conflict-Based Search
Algorithm for Multi-Agent Pathfinding. In IJCAI 2015, 740–746.

Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T. S.;
and Koenig, S. 2018. Adding Heuristics to Conflict-Based Search
for Multi-Agent Path Finding. In ICAPS 2019, 83–87.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2020. New techniques for pairwise symmetry breaking in multi-
agent path finding. In ICAPS 2020, 193–201.

Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and Koenig, S.
2019. Disjoint splitting for multi-agent path finding with conflict-
based search. In ICAPS 2019, 279–283.

Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval path
planning for dynamic environments. In ICRA 2011, 5628–5635.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant., N. R. 2015.
Conflict-based search for optimal multiagent path finding. Arti-
ficial Intelligence Journal 218: 40–66.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.; Walker,
T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. S.; et al. 2019.
Multi-agent pathfinding: Definitions, variants, and benchmarks. In
SoCS 2019, 151–158.

Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2018. Extended
Increasing Cost Tree Search for Non-Unit Cost Domains. In IJCAI
2018, 534–540.

Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2020. Generalized
and Sub-Optimal Bipartite Constraints for Conflict-Based Search.
In AAAI 2020, 7277–7284.

146


