
Bi-objective Search with Bi-directional A* (Extended Abstract)*

Saman Ahmadi,1,2 Guido Tack,1 Daniel Harabor,1 Philip Kilby2

1 Department of Data Science and Artificial Intelligence, Monash University, Australia
2 CSIRO Data61, Australia

{saman.ahmadi, guido.tack, daniel.harabor}@monash.edu, philip.kilby@data61.csiro.au

Abstract
Bi-objective search is a problem of finding a set of op-
timal solutions in a two-dimensional domain. This study
proposes several enhancements to the state-of-the-art bi-
objective search with A* and develops its bi-directional vari-
ant. Our experimental results on benchmark instances show
that our enhanced algorithm is on average five times faster
than the state of the art bi-objective search algorithms.

Introduction
Bi-objective search is a well-know problem in AI with vari-
ous real-world applications such as planning paths for elec-
tric vehicles, where time and energy-efficiency must be si-
multaneously optimised (Shen et al. 2019). The main chal-
lenge in such cases is that solutions are seldom unique. Thus
instead of computing a single best path, our task instead is
to compute all non-dominated paths in a Pareto-optimal set.
A survey of bi-objective one-to-all shortest path algorithms
appears in Raith and Ehrgott (2009). For point-to-point
bi-criteria problems there exist other more recent works
which are considered state-of-the-art. Bi-objective Dijk-
stra (Sedeño-Noda and Colebrook 2019) and Bi-objective
A* (BOA*) (Ulloa et al. 2020) are such algorithms. In con-
trast to eager dominance checking, as in the Bi-objective Di-
jkstra algorithm, BOA* uses a lazy dominance checking, im-
proving on a routine originally developed for multi-objective
search (Pulido, Mandow, and Pérez-de-la-Cruz 2015).

In this study, we present Bi-Objective Bi-directional A*
(BOBA*), a bi-directional extension of the BOA* algorithm
that uses different objective orders and includes several new
heuristics to speed up the search. Our experiments on a set
of 1,000 large test cases show that BOBA* can solve all of
the cases to optimality, outperforming the state-of-the-art al-
gorithms in both runtime and memory requirement.

Bi-objective Bi-directional Search
For a directed bi-objective graph G = (S,E) with a finite
set of states S and a set of edges E ⊆ S × S, the point-to-

*See our full paper (Ahmadi et al. 2021a) for details. Re-
search at Monash University is supported by the Australian Re-
search Council (ARC) under grant numbers DP190100013 and
DP200100025 as well as a gift from Amazon.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

point bi-objective search problem is to find the set of Pareto-
optimal solution paths from start ∈ S to goal ∈ S that
are not dominated by any solution for both objectives. Ev-
ery edge e ∈ E has two non-negative attributes accessed
via the cost function cost : E → R+ × R+. A path is a se-
quence of states si ∈ S with i ∈ {1, . . . , n}. The cost of path
p = {s1, s2, s3, . . . , sn} is then defined as the sum of cor-
responding attributes on all the edges constituting the path
as cost(p) =

∑n−1
i=1 cost(si, si+1). We define our search

objects to be nodes. We perform a systematic search by ex-
panding nodes in best first order. Each expansion operation
generates a set of successor nodes, which are added into an
Open list. The Open list sorts the nodes according to their
f-values in an ascending order, for the purpose of further ex-
pansion. As with other A*-based algorithms, we compute
f-values using a consistent and admissible heuristic function
h : S → R+ × R+ (Hart, Nilsson, and Raphael 1968). In
other words, for node x associated with state s(x), we have
f(x) = g(x) +h(s(x)) where g(x) is the cost of a concrete
path from start to state s(x) and h(s(x)) is a lower bound
on the cost of paths from state s(x) to goal . Moreover, in
bi-objective search, cost values have two components which
means that every (boldface) cost is a tuple, eg. f = (f1, f2).

Main idea: Our Bi-objective Bi-directional A* algorithm
(BOBA* for short) relies on a set of single-objective one-to-
all heuristics, which we compute in the forward and back-
ward directions. These heuristics inform the primary objec-
tive costs of two subsequent uni-directional BOA* searches
(one forward, one backward). The two BOA* are run in par-
allel and each has a different objective order: ((f1, f2) and
(f2, f1)). The searches independently explore the graph to-
wards the opposite end, with each primary objective cost set-
tled in one direction being used to improve secondary objec-
tive bounds in the other direction. The output is the set of all
non-dominated solutions, found in either direction.

Initialisation Phase
During an initialisation step BOA* computes a lower-
bounding heuristic function to guide its main search. This
procedure computes reverse/backward distances for the pri-
mary objective, from the goal to all other states in the graph.
BOBA* proceeds similarly but requires 4 heuristics: one for
each objective and in each direction. Here we rely on a fast
initialisation scheme that replaces Dijkstra search with cost

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

142



1

2

3 4 5start goal

(2
, 1
)

(1, 2)

(3, 3)

(2, 1)

(1
, 2
)

(1, 1) (1, 1) (1, 1)

Figure 1: An example graph with cost on the edges

bounded A* (Ahmadi et al. 2021b). For a further speedup we
exploit already computed heuristic values. Thus, after com-
pleting a search in the one direction, the next cost-bounded
search, in the opposite direction, can ignore as out-of-bound
any states not expanded by the previous search.

Main Search
There are four main ingredients that allow BOBA* to com-
pute unique Pareto-optimal solutions more efficiently.

Early solution update: This strategy allows the search
to identify non-dominated solutions before expanding the
goal state. This is done by coupling nodes with a comple-
mentary shortest path. Consider Figure 1 where the forward
BOA* search expands nodes in (f1, f2) order; i.e. f1 is the
primary cost, f2 is the secondary cost and the initial upper
bounds are f1, f2 = ∞. Before expanding start we exploit
the heuristic function for the primary objective to identify an
f1-optimal complementary path with cost = (5, 7). Since
this solution is within the upper bounds we add start to the
solution set and update the secondary upper bound f2 = 7
(the complementary path is extracted at the end by following
stored backpointers). This strategy can be further improved
by avoiding repeated expansion of states with only one non-
dominated path to goal (eg. states 3, 4, 5 would normally
be expanded thrice). In this example BOBA* expands only
one node (resp. start) before it can return a unique Pareto-
optimal set with optimum costs {(5, 7), (6, 6), (7, 5)}.

Secondary heuristic tuning: Each time we expand a
node in one direction its primary objective cost can be propa-
gated to improve the secondary bounds for the search in the
opposite direction. For example, when the forward search
expands start in Figure 1 it can immediately prune state (2)
as its estimated secondary cost is not within the previously
established bound; i.e., f2(2) = 2 + 5 ≮ 7. Notice that
state (3) is now no longer reachable via its cost-optimum
path, originally via state (2). When the forward search even-
tually picks state (3) from Open, we compare the achieved
f1 cost to the f1 lower-bound estimate of state (3) and notice
it is larger. This information can now be propagated so as to
better inform the search in the opposite direction. In other
words, we raise the secondary objective cost, from start to
state (3). After this update, the backward search can poten-
tially avoid redundant expansion of state (3) depending on
its secondary upper bound f1 (as it runs in (f2, f1) order).

More efficient Open list: To improve the performance
of search we propose to replace the conventional heap-
based Open list of BOA* with a bucket-based implemen-
tation (Denardo and Fox 1979). In contrast to other similar

0 200 400 600 800 1,000
10−4

10−2

100

102

104

Number of solved instances

R
u
n
ti
m
e
in

se
co

n
d
s
(l
o
g
a
ri
th

m
ic
)

Runtime of the algorithms over instances

Dij

Bi-Dij

BOA*

BOBA*

Figure 2: Cactus plot of algorithms’ performance.

algorithms, where the bucket list is regularly resized and the
list is sparsely populated, for the significant number of (cost-
bounded) nodes in our problem we expect to see almost all
of the buckets filled. This is because the upper and lower
bounds on the f -values of the nodes in BOBA* are known
prior to its main searches, which allows us to use a small,
fixed range of bucket values.

Memory efficient backtracking: Since BOBA* only ex-
pands nodes once, we recycle the memory used to store
nodes and keep their backtracking information in other com-
pact data structures. We do this by only storing nodes’ parent
state and parent path id.

Experimental Results
We implemented our BOBA* algorithms based on a paral-
lel framework in C++ and compared that with bi-objective
Dijkstra (Dij) and bi-directional Dijkstra (Bi-Dij), and bi-
objective A* (BOA*) from the literature, all implemented in
C. We evaluated all of the algorithms on 1,000 random test
cases from 10 instances in the 9th DIMACS challenge (DI-
MACS 2005) with (distance, time) as objectives. We ran our
experiments on an Intel Xeon E5-2660V3 processor running
at 2.6 GHz and with 128 GB of RAM, in a one-hour timeout.

Figure 2 depicts the algorithms’ performance over the
solved instances for CPU time. The results show that
BOBA* delivers superior performance to its competitors by
solving all of the instances to optimality within the time
limit. Compared to BOA*, BOBA* is on average five times
faster and completes the task eight times more efficiently in
terms of memory. BOBA* also shows a massive speed up in
the easy cases due to its efficient initialisation. It solves 282
cases before BOA* solves its easiest case.

Conclusion
This paper introduced BOBA*, a bi-directional algorithm
for bi-objective search. We enrich BOBA* with more effi-
cient approaches for both the initial heuristics and the main
search. Our experiments show that BOBA* outperforms the
state-of-the-art algorithms in both runtime and memory use,
solving all of the benchmarks to optimality.

143



References
Ahmadi, S.; Tack, G.; Harabor, D.; and Kilby, P.
2021a. Bi-objective Search with Bi-directional A. CoRR
abs/2105.11888. URL https://arxiv.org/abs/2105.11888.
Ahmadi, S.; Tack, G.; Harabor, D. D.; and Kilby, P. 2021b. A
Fast Exact Algorithm for the Resource Constrained Shortest
Path Problem. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021,
12217–12224. AAAI Press. URL https://ojs.aaai.org/index.
php/AAAI/article/view/17450.
Denardo, E. V.; and Fox, B. L. 1979. Shortest-Route Meth-
ods: 1. Reaching, Pruning, and Buckets. Oper. Res. 27(1):
161–186. doi:10.1287/opre.27.1.161. URL https://doi.org/
10.1287/opre.27.1.161.
DIMACS. 2005. 9th DIMACS Implementation Challenge
- Shortest Paths. http://users.diag.uniroma1.it/challenge9.
Accessed: 2021-05-24.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. Syst. Sci. Cybern. 4(2): 100–107. doi:
10.1109/TSSC.1968.300136. URL https://doi.org/10.1109/
TSSC.1968.300136.
Pulido, F. J.; Mandow, L.; and Pérez-de-la-Cruz, J. 2015.
Dimensionality reduction in multiobjective shortest path
search. Comput. Oper. Res. 64: 60–70. doi:10.1016/j.
cor.2015.05.007. URL https://doi.org/10.1016/j.cor.2015.
05.007.
Raith, A.; and Ehrgott, M. 2009. A comparison of solu-
tion strategies for biobjective shortest path problems. Com-
put. Oper. Res. 36(4): 1299–1331. doi:10.1016/j.cor.2008.
02.002. URL https://doi.org/10.1016/j.cor.2008.02.002.
Sedeño-Noda, A.; and Colebrook, M. 2019. A biobjective
Dijkstra algorithm. Eur. J. Oper. Res. 276(1): 106–118. doi:
10.1016/j.ejor.2019.01.007. URL https://doi.org/10.1016/j.
ejor.2019.01.007.
Shen, L.; Shao, H.; Wu, T.; Lam, W. H.; and Zhu, E. C.
2019. An energy-efficient reliable path finding algorithm for
stochastic road networks with electric vehicles. Transporta-
tion Research Part C: Emerging Technologies 102: 450–473.
Ulloa, C. H.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo,
L.; and Koenig, S. 2020. A Simple and Fast Bi-Objective
Search Algorithm. In Beck, J. C.; Buffet, O.; Hoffmann, J.;
Karpas, E.; and Sohrabi, S., eds., Proceedings of the Thir-
tieth International Conference on Automated Planning and
Scheduling, Nancy, France, October 26-30, 2020, 143–151.
AAAI Press. URL https://aaai.org/ojs/index.php/ICAPS/
article/view/6655.

144


