
Experimental Evaluation of Classical Multi Agent Path Finding Algorithms

Omri Kaduri,1 Eli Boyarski,1 Roni Stern1,2

1Ben Gurion University of the Negev, SISE Dept., Be’er Sheva, Israel
2Palo Alto Research Center (PARC), ISL, Palo Alto, USA

kaduro@post.bgu.ac.il, eli@boyar.ski, sternron@post.bgu.ac.il

Abstract

Modern optimal multi-agent path finding (MAPF) algorithms
can scale to solve problems with hundreds of agents. To fa-
cilitate comparison between these algorithms, a benchmark
of MAPF problems was recently proposed. We report a com-
prehensive evaluation of a diverse set of state-of-the-art opti-
mal MAPF algorithms over the entire benchmark. The results
show that in terms of coverage, the recently proposed Lazy
CBS algorithm outperforms all others significantly, but it is
usually not the fastest algorithm. This suggests algorithm se-
lection methods can be beneficial. Then, we characterize dif-
ferent setups for algorithm selection in MAPF, and evaluate
simple baselines for each setup. Finally, we propose an exten-
sion of the existing MAPF benchmark in the form of different
ways to distribute the agents’ source and target locations.

1 Introduction
A multi-agent pathfinding (MAPF) problem with k agents is
defined by a tuple 〈G, s, t〉, where G = (V,E) is an undi-
rected graph, s : [1, . . . , k] → V maps an agent to its source
vertex, and t : [1, . . . , k] → V maps an agent to its tar-
get vertex. Each agent starts in its source vertex. Time is
discretized and in every time step, each agent either waits
in its current vertex or moves to one of the vertices adja-
cent to it. A solution to a MAPF problem is a sequence of
wait/move actions for each agent such that the agents reach
their targets without colliding with each other. MAPF has
important applications in robotics (Veloso et al. 2015), au-
tonomous vehicles, and automated warehouses (Wurman,
D’Andrea, and Mountz 2008) and other fields (Morris et al.
2016; Ma et al. 2017). This problem of finding an optimal
solution to a given MAPF problem, for various common op-
timization criteria, is known to be NP Hard (Surynek 2010;
Yu and LaValle 2013). Nevertheless, many powerful optimal
MAPF algorithms have been proposed (Felner et al. 2017;
Ma and Koenig 2017), which in some cases can scale to
problems with more than 100 agents. However, no algorithm
has emerged to dominate all others.

Recently, a benchmark of MAPF problems in grid en-
vironments have been proposed (Stern et al. 2019), which

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

includes a diverse set of 33 grids. The first contribution
of this work is a comprehensive evaluation of a diverse
set of state-of-the-art optimal MAPF algorithms, namely,
EPEA∗ (Goldenberg et al. 2014), ICTS (Sharon et al. 2013),
CBS-H (Boyarski et al. 2015), MDD-SAT (Surynek et al.
2016), and Lazy CBS (Gange, Harabor, and Stuckey 2019),
over the entire benchmark. Running this evaluation required
more than 45 days. The results of this evaluation show that
the newest algorithm — Lazy CBS— is able to solve more
problems under a specified time limit (5 minutes in our
case), while CBS-H is more often the fastest algorithm. In
general, the identity of the fastest algorithm varies between
problems from different grid types and even for problems on
the same grid. This suggests that using an Algorithm Selec-
tion (AS) method to find the best optimal MAPF algorithm
for a given MAPF problem, can be beneficial.

Our second contribution is to distinguish between
three AS for MAPF setups, called in-grid, in-grid-type,
and between-grids AS. Prior work on AS for optimal
MAPF (Kaduri, Boyarski, and Stern 2020) applied learning-
based techniques to in-grid AS, and only included search-
based solvers. We show that simple baseline approaches that
do not require machine learning work well for all AS setups,
when applied to the current MAPF benchmark.

The third contribution of this work is an extension to the
current MAPF benchmark in the form of additional types
of scenarios in which the agents source and target locations
are distributed in different ways. The specific distributions
we created have been proposed by Sigurdson et al. (2019)
and can be seen in Figure 2. Finally, we report the results of
all the algorithms in our portfolio as well as the AS base-
lines on the extended MAPF benchmark. The results show
that the source and target locations’ distributions can have
significant affect on the performance of MAPF algorithm,
suggesting interesting directions for future work. Our source
code and dataset are publicly available.1

2 Data Collection
Next, we describe our data collection process, which con-
sists of running a portfolio of MAPF algorithms on a suite

1https://github.com/OmriKaduri/mapf-selection

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

126



Model
Fastest Coverage

All Even Rand. All Even Rand.

EPEA∗ 9.63 8.49 10.66 55.26 55.13 55.57
ICTS 4.23 2.73 5.21 49.60 48.99 50.32
CBS-H 46.95 45.02 48.75 83.20 66.01 98.49
MDD-SAT 2.11 2.48 1.72 57.92 57.48 58.54
Lazy CBS 37.26 41.28 33.66 92.36 91.45 93.17

Best-at-grid(C) 49.45 49.98 48.47 97.62 97.43 98.55
Best-at-grid(F) 60.09 61.77 60.29 92.46 91.53 97.80
Best-at-grid-type(C) 51.18 40.88 48.71 93.95 91.64 98.51
Best-at-grid-type(F) 57.47 58.00 58.11 92.57 89.81 98.48

Table 1: Results for all the algorithms in our portfolio and
the AS baselines over the standard MAPF benchmarks.

of MAPF problems and measuring their performance. We
consider classical MAPF problems (Stern et al. 2019), where
each action – wait or move – takes one time step. A collision
between single-agent plans occurs if there are any vertex,
edge, or swapping conflicts between them, i.e., the agents
cannot occupy the same vertex, the same edge, or swap loca-
tions, at the same time, respectively. When an agent reaches
its target, it stays there and blocks other agents from passing
through that vertex.2 The cost of a solution to a MAPF prob-
lem is the number of move/wait actions all agents perform
until all agents reach their target. This is known as the sum-
of-costs objective. All the MAPF algorithms we consider are
optimal, i.e., they return only lowest-cost solutions.

Our portfolio of algorithms comprises the following di-
verse set of MAPF algorithms: (1) Enhanced Partial Expan-
sion A∗ (EPEA∗) (Goldenberg et al. 2014); (2) Increasing
Cost Tree Search (ICTS) (Sharon et al. 2013); (3) MDD-
SAT (Surynek et al. 2016); (4) Lazy CBS (Gange, Harabor,
and Stuckey 2019); and (5) a state-of-the-art implementation
of the Conflict Based Search(CBS) algorithm (Sharon et al.
2015) that includes a recently proposed heuristic (Li et al.
2019), conflict bypassing, and conflict prioritization (Bo-
yarski et al. 2015). We refer to the latter as CBS-H.

EPEA∗ is a an A∗ variant designed for domains with a
large branching factor that was shown to be effective for
MAPF. ICTS and CBS-H also apply graph search algo-
rithms, but they search in different search spaces. MDD-
SAT works by compiling MAPF problems to sequences
of Boolean Satisfiability (SAT) problems and solving them
with an off-the-shelf SAT solver. Lazy CBS works by inte-
grating techniques from CBS and Constraint Programming.

We run each of the algorithms in our portfolio on a suite
of MAPF problems from the publicly available grid-based
MAPF benchmark (Stern et al. 2019). This benchmark con-
tains 33 grids arranged into seven types: grids from video
games (denoted as game grids), city maps (city), maze-like
grids (maze), grids arranged as rooms with narrow doors
between them (room), open grids (empty), open grids with
randomly placed obstacles (random), and grids that are in-

2An agent can reach its target and then move away from it to
allow another agent to pass. The agent will have to return to its
target later, since eventually all agents must end up in their target.

spired by the structure of warehouses (warehouse).
For each grid, the benchmark contains two sets of sce-

nario files, each consisting of 25 files. A scenario file con-
tains source and target locations for up to 1,000 agents,
where possible. In the first set of scenario files, denoted
Random, the agents source and target locations are located
purely randomly. In the second set of scenario files, denoted
Even, the agents’ source and target locations are evenly dis-
tributed in buckets of 10 agents according to their distance.
This creates MAPF problems with an even mix of short
and long single-agent plans. We use these scenario files as
suggested by Stern et al. (2019), that is, we use each al-
gorithm to solve MAPF problems on the chosen grid with
one agent, two agents, and so on until the runtime required
to solve the problem reaches a timeout of 5 minutes. Prob-
lems that no algorithm in our portfolio could solve under this
time limit were discarded from the analysis. We recorded
the runtime of every algorithm in every run, and whether
the algorithm has reached a timeout or not. Since all algo-
rithms guarantee optimality, we do not report solution costs.
The resulting dataset consists of over 190,000 solved MAPF
problems, which includes more than 100,000 problems from
Random scenario files, and 89,000 problems from Even sce-
nario files. Creating this dataset required approximately 45
days of computation on a single computer. Our experiments
are conducted on a Linux machine with 2.60GHz Intel Xeon
Core E5-2630 with 256GB RAM.

In our analysis, we focus on the following metrics to ag-
gregate the performance of a given MAPF algorithm on a
set of problems. The first metric is Fastest, which is the per-
centage of problems the chosen algorithm solved the fastest.
The second metric is Coverage, which is the percentage of
problems the algorithm solved within the 5 minute timeout
out of the total number problems solved within this timeout
by all algorithms. To avoid biases in favor of larger grids,
we normalized the above metrics for each grid, and report
the mean of these values.

3 Analysis
The first five rows in Table 1 show the Fastest and Cov-
erage results for all the evaluated algorithms across all the
problems in our dataset. The columns “Even”, “Rand.”, and
“All” show the results for the Even scenario files, Random
scenario files, or both, respectively. Highlighted in bold are
the results of the best algorithm in each metric and set of
scenario files. Consider first the results over all the prob-
lems in our dataset (the data in the “All” columns). Lazy
CBS outperforms all other algorithms by a large margin in
terms of Coverage. Moreover, in our dataset less than 9%
of the problems were solved by other algorithms and not by
Lazy CBS. Thus, one may say that among the algorithms
in our portfolio there is, finally, a universal winner: Lazy
CBS. However, in terms of the Fastest metric, the results are
more diverse. While CBS-H is most often the fastest algo-
rithm (46.95 Fastest value), in the majority of the cases some
other algorithm was the fastest. For example, in 37.26% of
the cases Lazy CBS was the fastest, and for 9.63% of the
problems EPEA∗ is the fastest. The latter result is surpris-
ing, since EPEA∗ has been developed almost 10 years ago.

127



Figure 1: Fastest (left) and Coverage (right) per grid type.

Next, consider the difference between the results for the
Even and Random scenarios. While most algorithms exhibit
similar results for both types of scenario files, the perfor-
mance of CBS-H is drastically different. For Even scenarios,
its coverage is only 66.01, while for Random scenarios its
coverage is 98.49, which is the highest coverage among all
algorithms. A possible explanation for this is that Random
scenarios are less likely to produce MAPF problems where
the source and target of a given agent are very close to each
other. Such cases may pose a challenge to CBS-H, since con-
flicts for such agents are harder to resolve, and moving in
and out of an agent’s target is known to be challenging for
CBS. In contrast, Lazy CBS employs constraint propagation
and conflict learning techniques that allows it to better han-
dle problems with many conflicts.

3.1 Results per Grid Types
Figure 1 shows the Fastest (left) and Coverage (right) re-
sults for the different MAPF algorithms across different
grid types for all the scenarios. In terms of Coverage, Lazy
CBS and CBS-H perform similarly for game, city, and maze
grids, but Lazy CBS achieves significantly higher Coverage
for warehouse, room, random, and empty. Considering also
the Fastest results, we see that CBS-H is almost always the
fastest in the city and game grids, while Lazy CBS is usu-
ally the fastest for warehouse, room, random, and empty.
Here too, it is worthwhile to note the surprising behavior
of EPEA∗, which is the fastest algorithm in a non-negiblibe
portion of the problems in city and warehouse grids. On the
other hand, EPEA∗ on the other grid types, as well as MDD-
SAT and ICTS on all grid types, are not competitive in terms
of their Coverage and Fastest results.

3.2 A Universal Winner for Optimal MAPF?
One may conclude that Lazy CBS is the best optimal MAPF
algorithm in our portfolio: it has significantly higher over-
all Coverage and is often the fastest algorithm. This is not,
however, the conclusion we draw from our analysis.

First, the literature on optimal MAPF is growing rapidly,
and therefore we were not able to include all state of the
art improvements and algorithms for MAPF. In particular,
our best CBS implementation, CBS-H, does not include
recently proposed symmetry-breaking techniques (Zhang
et al. 2020). In addition, our portfolio does not include
BCP (Lam et al. 2019), which reports some improvements
over Lazy CBS. Second, a deeper analysis of our dataset

reveals that in some grids, Lazy CBS was significantly out-
performed by all other algorithms. This is the case in the
orz900d game grid. In this grid, Lazy CBS performs poorly
across all 50 different scenario files. Specifically, while Lazy
CBS cannot solve for MAPF problems in this grid with more
than 5 agents on average, other solvers solve for problems
with almost 100 agents. Similarly, in the w woundedcoast
game grid, Lazy CBS was outperformed in 49 out of 50 sce-
nario files. These grids are the largest grids in the bench-
mark, but we leave further analysis for future work.

Another conclusion that one may draw from our results is
that MDD-SAT and ICTS perform poorly and should be dis-
carded. This conclusion is also premature. In some cases,
MDD-SAT significantly outperforms all other algorithms.
For example, in the maze-32-32-4 grid there is a scenario
in which MDD-SAT is able to solve for 22 agents while
the next best algorithm is able to only solve for 5 agents.
On average, in this specific maze grid MDD-SAT is able to
solve problems with 6.83 more agents than the next best al-
gorithm. Note that this grid is particularly challenging, and
on average, the maximal number of agents solved by any
algorithm for a given scenario file is only 26.58 for this grid.

4 Algorithm Selection for MAPF
The above observations and results suggest that choosing in-
telligently which optimal MAPF algorithm to choose for a
given MAPF problem is a worthwhile endeavor. Recently
Kaduri et al. (Kaduri, Boyarski, and Stern 2020) applied
AS techniques to achieve this, using supervised learning to
train a classifier that chooses the best optimal MAPF algo-
rithm for a given MAPF problem, where best here means
maximizing one of the metrics defined above. While they
achieved remarkable results, their algorithm portfolio only
included search-based MAPF algorithm. Specifically, they
did not consider using MDD-SAT or Lazy CBS. Also, in
the setup they considered all the grids were provided during
training. That is, they evaluated the performance of their AS
algorithms on MAPF problems created on the same grids as
those they trained on, only with different agent configura-
tions. This setup is reasonable in some cases, but it cannot
be used if one receives a MAPF problem on grids that were
not available during training. In general, research on AS for
MAPF must state what is the relation between the MAPF
problems available during training and the MAPF problems
used for evaluation purposes, i.e., testing.

4.1 MAPF Algorithm Selection Setups
To support future research on this topic, we define the fol-
lowing AS for MAPF setups: (1) In-grid AS, where all grids
used for testing are also provided during training, yet with
different agent configurations (i.e., source and target loca-
tions); (2) In-grid-type AS, where all grid types used for
testing are also provided during training, yet the specific
grids used for testing are different; and (3) Between-grid-
type AS, where grid types used for testing are different from
those used for training.

For a given AS setup (in-grid, in-grid-type, and between-
grid-type) and evaluation metric (Coverage or Fastest), there

128



Figure 2: Example of Sigurdson et al.’s (2019) agent distributions. From left to right: CS, IO, TT, SS, OI, and TW.

is a natural AS baseline that maximizes the chosen metric
on the relevant problems in the training set. For the in-grid
setup, we denote by Best-at-grid(C) and Best-at-grid(F) the
baselines that maximizes the Coverage and Fastest metrics,
respectively. For example, given a MAPF problem Π, the
best-at-grid(C) baseline selects the algorithm that yielded
the highest average Coverage in the training problems that
shared the same grid as Π. Similarly, we denote by Best-
at-grid-type(C) and Best-at-grid-type(F) the corresponding
baselines for the in-grid-type setup. Next, we report on the
performance of the four AS baselines defined above. Note
that a perfect AS aimed towards optimizing the Fastest met-
ric would always have perfect score of 100% for both met-
rics (C and F).

4.2 Algorithm Selection Baselines Results
To evaluate these AS baselines, we performed a 3-fold cross
validation on our dataset. The last 4 lines in Table 1 show
the average Coverage and Fastest results for our baselines.

The results show that all baselines often fail to identify the
fastest algorithm. For example, the best-at-grid(F) baseline
identifies the fastest algorithm in 60.09% of the problems.
Thus, an AS method may result in identifying the fastest
algorithm in significantly more case. However, if one aims
to maximize Coverage, the results show that there is little
to gain from developing algorithm selection methods for all
algorithm selection setups. For example, best-at-grid(C) al-
ready yields Coverage higher than 97%. This means a per-
fect AS algorithm for the in-grid setup, i.e., one that always
chooses the best algorithm for each problem, will be able to
solve less than 3% more problems from this dataset over the
best-at-grid baseline. Similarly, a perfect AS for the in-grid-
type setup can solve less than 9% more problems from this
dataset over the best-at-grid-type baseline. The baseline for
maximizing Coverage in the between-grid setup is to always
choose Lazy CBS, since it has the highest Coverage. The
baseline also achieves a very high Coverage (over 91%).

5 Extending the MAPF Benchmark
The distinction between Even and Random scenario files is
a step towards understanding the impact of agent locations
distributions on the performance of different MAPF algo-
rithms. As shown in Table 1, agent locations distributions
has already a significant impact on the performance of CBS-
H, where it provided the highest coverage Coverage for Ran-
dom scenarios (98.49) but a much lower Coverage for Even
scenarios (66.01). To this end, we propose to extend the grid-
based MAPF benchmark (Stern et al. 2019) with additional
types of scenario files that include more diverse agent loca-

tions’ distributions. Specifically, the new types of scenario
files we created follows the agent locations’ distributions
proposed by Sigurdson et al. (2019): (1) Cross Sides (CS):
all agents start on one side and traverse to the other side; (2)
Swap Sides (SS): half the agents start on one side and the
other half start on the other side, targets are randomly se-
lected in the side opposite of their sources; (3) Inside Out
(IO): agents start near the center of the grid and are assigned
targets near the outer edges of the grid; (4) Outside In (OI):
agents start near the outer edges of the grid and are assigned
targets near the center of the grid; (5) Tight to Tight (TT):
agents start together and are assigned targets that are as close
as possible elsewhere on the grid; (6) Tight to Wide (TW):
agents start close together and are assigned targets that are
spread out in the same general area of the grid. Table 2 shows
examples of the different scenario types. Green dots mark
the agents’ sources and red dots their targets.

We run all our algorithms on these newly created sce-
nario files. The results are shown in Table 2. Here too Lazy
CBS performs well in terms of Coverage and CBS-H per-
forms better according to the Fastest metric. However, the
relative performance of the different algorithm vary signifi-
cantly w.r.t. the type of scenarios. For example, the Cover-
age of Lazy CBS is 90.51 for IO scenarios while it drops
to 83.81 for TT scenarios. Also, it is the fastest algorithm in
42.83% of the problems from CS scenarios and only 21.35%
for problems from TW scenarios. Similarly, the Coverage of
EPEA∗ and CBS-H are 74.89 and 74.53, respectively, for
TW scenarios, and it drops to 56.23 and 51.58, respectively,
CS scenarios. The results also show that here, there is larger
potential for improvements using AS methods. For example,
the best-at-grid(C) achieves Coverage between 89.76 and
94.48 while it achieved an almost perfect Coverage (98.55)
in the original dataset.

6 Discussion and Conclusion
To the best of our knowledge, we performed the first
comprehensive evaluation of search-based and compilation-
based algorithms for optimal MAPF over the grid-based
MAPF benchmark.

The results of this evaluation reveal that: (1) Lazy CBS
significantly outperform all other algorithms in terms of
Coverage; (2) CBS-H is more often the fastest algorithm
to solve a given a problem; but (3) in many cases other al-
gorithms are faster. Then, we introduce three types of AS
setups, and describe baselines for each. Surprisingly, these
baselines work remarkably well on the current benchmark,
leaving little room for advanced AS, in terms of cover-
age. Therefore, we generated an extension of the current

129



Model
Fastest Coverage

All CS SS IO OI TT TW All CS SS IO OI TT TW

EPEA∗ 13.50 12.00 10.20 14.38 11.55 7.92 19.08 59.67 56.23 57.90 58.26 53.38 63.10 74.89
ICTS 4.89 4.22 4.47 3.23 5.55 4.48 7.08 55.39 54.17 53.04 52.89 50.32 62.49 68.40
CBS-H 42.47 38.73 42.58 41.90 41.05 65.17 50.64 55.93 51.58 55.07 53.46 54.11 72.04 74.53
MDD-SAT 2.22 2.22 4.17 3.06 3.65 2.79 1.84 56.02 55.63 58.29 55.90 57.66 57.94 70.62
Lazy CBS 36.95 42.83 38.58 37.43 38.20 19.64 21.35 89.74 89.59 89.42 90.51 89.09 83.81 88.36

Best-at-grid(C) 44.97 45.38 43.66 46.33 44.76 27.13 32.19 93.41 91.10 89.76 94.48 91.40 92.36 90.14
Best-at-grid(F) 52.91 52.77 51.63 51.58 46.20 44.86 49.99 81.66 85.49 85.00 81.75 82.15 79.53 84.88
Best-at-grid-type(C) 39.43 44.63 39.45 34.89 37.61 52.44 28.36 88.8 88.32 88.98 87.58 90.43 87.95 87.61
Best-at-grid-type(F) 52.61 55.86 54.52 51.78 48.72 59.82 51.84 78.22 79.05 79.54 77.86 77.03 80.32 86.54

Table 2: Results for all the algorithms in our portfolio and the AS baselines over the extended MAPF benchmarks.

benchmark where the agents source and target locations are
distributed in various ways, as proposed by Sigurdson et
al. (Sigurdson et al. 2019). Future work will add the re-
sults of other state of the art optimal MAPF algorithms to
our datasets, namely BCP (Lam et al. 2019) and symmetry
breaking techniques for CBS (Zhang et al. 2020).

References
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin,
D.; Betzalel, O.; and Shimony, E. 2015. ICBS: improved
conflict-based search algorithm for multi-agent pathfinding.
In International Joint Conference on Artificial Intelligence
(IJCAI).

Felner, A.; Stern, R.; Shimony, S. E.; Boyarski, E.; Gold-
enberg, M.; Sharon, G.; Sturtevant, N. R.; Wagner, G.;
and Surynek, P. 2017. Search-Based Optimal Solvers for
the Multi-Agent Pathfinding Problem: Summary and Chal-
lenges. In Symposium on Combinatorial Search (SoCS), 29–
37.

Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
Implicit conflict-based search using lazy clause generation.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 29, 155–162.

Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturte-
vant, N.; Holte, R. C.; and Schaeffer, J. 2014. Enhanced par-
tial expansion A. Journal of Artificial Intelligence Research
50: 141–187.

Kaduri, O.; Boyarski, E.; and Stern, R. 2020. Algorithm
Selection for Optimal Multi-Agent Pathfinding. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling, volume 30, 161–165.

Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-cut-and-price for multi-agent pathfinding. In In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 1289–1296.

Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019. Improved heuristics for multi-agent path finding with
conflict-based search. In International Joint Conference on
Artificial Intelligence (IJCAI), 442–449.

Ma, H.; and Koenig, S. 2017. AI buzzwords explained:
multi-agent path finding (MAPF). AI Matters 3(3): 15–19.

Ma, H.; Yang, J.; Cohen, L.; Kumar, T. K. S.; and Koenig, S.
2017. Feasibility Study: Moving Non-Homogeneous Teams
in Congested Video Game Environments. In Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 270–272.
Morris, R.; Pasareanu, C. S.; Luckow, K. S.; Malik, W.; Ma,
H.; Kumar, T. S.; and Koenig, S. 2016. Planning, Scheduling
and Monitoring for Airport Surface Operations. In AAAI
Workshop: Planning for Hybrid Systems.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence 195: 470–495.
Sigurdson, D.; Bulitko, V.; Koenig, S.; Hernández, C.; and
Yeoh, W. 2019. Automatic Algorithm Selection In Multi-
agent Pathfinding. CoRR URL http://arxiv.org/abs/1906.
03992.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In the International
Symposium on Combinatorial Search (SOCS), 151–159.
Surynek, P. 2010. An Optimization Variant of Multi-Robot
Path Planning Is Intractable. In AAAI.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016.
Efficient SAT approach to multi-agent path finding under the
sum of costs objective. In European Conference on Artificial
Intelligence (ECAI), 810–818.
Veloso, M. M.; Biswas, J.; Coltin, B.; and Rosenthal, S.
2015. CoBots: Robust Symbiotic Autonomous Mobile Ser-
vice Robots. In IJCAI, 4423.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI magazine 29(1): 9.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In AAAI.
Zhang, H.; Li, J.; Surynek, P.; Koenig, S.; and Kumar, T. S.
2020. Multi-agent path finding with mutex propagation.
In International Conference on Automated Planning and
Scheduling, volume 30, 323–332.

130


