
The Closed List Is an Obstacle Too

Ariel Felner1, Shahaf S. Shperberg2, Hadar Buzhish1

1 SISE Department, Ben-Gurion University, Be’er-Sheva, Israel
2 CS Department, Ben-Gurion University, Be’er-Sheva, Israel

felner@bgu.ac.il, shperbsh@post.bgu.ac.il, hadarbuzi@gmail.com

Abstract
The baseline approach for optimal path finding in 4-
connected grids is A* with Manhattan Distance. In this paper
we introduce an enhancement to A* (called BOXA*) on grids
which does not need any preprocessing and only needs negli-
gible additional memory. The main idea is to treat the closed-
list as a dynamic obstacle. We maintain rectangles which sur-
round CLOSED nodes and calculate an admissible heuristic
using the fact that an optimal path from a given node must go
around these rectangles. We experimentally show the benefits
of this approach on a variety of grid domains.

Introduction
Optimal path finding in grids is important in AI and robotics.
In this paper we limit the discussion to 4-connected 2D
grids. The baseline approach is to use A* with Manhattan
Distance (MD). Nevertheless, a large number of enhance-
ments were suggested over the years, most of which require
a preprocessing phase and/or additional memory to store
smart lookup tables which speed up the search (Sturtevant
et al. 2015). At one extreme, some methods calculate and
store the all pairs shortest paths information (Botea and
Harabor 2013). At the other extreme, some methods such
as jump point search (Harabor and Grastien 2011) do not
require any preprocessing or additional memory.

This paper introduces an enhancement to baseline A*
on grids which does not need any preprocessing and only
needs negligible additional memory. The main idea is to treat
closed nodes as obstacles. Dynamic lists of rectangles which
surround the closed list are maintained. We then calculate an
admissible heuristic using the fact that an optimal path from
any given node in OPEN must at least go around these rect-
angles. Finally, we provide experimental results that demon-
strate the benefits of this approach. This paper is a proof-of-
concept for using the closed-list to improve the heuristic of
open nodes. We believe that this idea can be also applied
to other gird settings (e.g. 8-connected and 3D), and maybe
even to other domains.

Motivation and Definitions
We assume that there exists a consistent base heuristic
(hbase). Throughout this paper we use MD as hbase. The

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Motivating example

consistency of hbase means that a node is always expanded
and closed with its best g-value and that it will never be re-
opened (Zhang et al. 2009). A motivating example appears
in Figure 1(left); blue nodes are in CLOSED and green nodes
are in OPEN (similarly, in all our figures). Assume A* is ex-
ecuted from s (the start state) to g (the goal state). Further
assume that node c was already closed with g(c), that node
x has just been generated and that we are seeking for h(x).
We now have the following lemma:

Lemma 1. If x is on an optimal path P from s to g which
was discovered by A*, then c will never appear on the re-
maining part of P after x.

Proof (by contradiction): Assume that P = {s x c
g} is an optimal path from s to g. But since c was already
closed and hbase is consistent P cannot be discovered by A*
as A* never reopen nodes when the heuristic is consistent.
In fact, in this case c was closed with its best g-value g(c) ≤
g(x) + d(x, c). So, instead of P , A* will find an alternative
path P ′ = s c g via the original expansion of c with
c(P ′) ≤ c(P) (because g(c) ≤ g(x) + d(x, c)).1 �

We note that the minimal requirement on a heuristic h as-
suring that A* finds an optimal solution is that there exists
one optimal path P where ∀x∈P (h(x) ≤ h∗(x)). That is, h
is required to be admissible only on P (Karpas and Domsh-
lak 2012). As a result, nodes that are not on this unique path
P may have overestimating h-values. In particular, consider
a node y /∈ P when it is generated. Ideally, if an oracle pre-
dicts that y /∈ P it would be safe to set h(y) =∞ and never

1If the smallest edge cost is ε > 0 then c(P ′) < c(P) and
g(c) < g(x) + d(x, c).

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

121

expand y. In this setting, A* will only expand the nodes on
the optimal path and reach the goal directly.

Therefore, when A* generates a node x the question we
actually ask is: if x is on an optimal path, what is a lower
bound on the remaining optimal path to the goal? We call
such lower bound path admissible. Consequently, when a
node x is generated, we want a lower bound on a path that
does not pass through any CLOSED node (because an opti-
mal path that includes x cannot include any CLOSED node
after x). In this sense, for this particular search from s to
g, CLOSED can be treated as an obstacle.

In the remaining of this paper we focus on finding such a
lower bound. We denote it by hBOX .

Rectangles Around Closed Nodes
Consider again the example in Figure 1(left) and observe the
gray rectangle which is the smallest rectangle that surrounds
CLOSED. Simple properties of 4-connected grids imply that
any shortest path that does not pass in any CLOSED node
(blue nodes) is equivalent in its length to the path that goes
around the rectangle. Therefore, hBOX calculates the short-
est path to the goal that goes around the rectangle.

Any rectangle r in a grid divides the grid into 9 zones
based on their locations relative to r as depicted in Fig-
ure 1(right). These zones can be (1:) cardinal to the rectangle
(e.g., north, east, south, west) (2:) diagonally to the rectan-
gle (e.g., north-west), or (3:) inside the rectangle. We say
that a rectangle blocks cell x from cell y (and vise versa) if
they are on opposite cardinal zones (i.e., north vs. south or
east vs. west). Similarly, we define four pivot points which
are diagonally adjacent to the corners of the rectangle. The
black squares in Figure 1(right) present the north-east and
the south-east pivots of the rectangle.

Definition 1 (hBOX (x,r)). Given that cell x is cardinal to
a rectangle r which surrounds closed cells, let PV (r, x) be
the two pivots that are on the same cardinal side as x (the
black circles in Figure 1(left) are PV (r, x)).

If x and goal are not blocked by r then:
hBOX (x, r) = hbase(x)

If x and goal are blocked by r (they are in opposite cardi-
nal directions) then:

hBOX (x, r) = minq∈PV (r,x)(hbase(x, q) + hbase(q))

Lemma 2. hBOX (x, r) is path admissible.

Proof: As explained above, if x is on an optimal path to
the goal then this path must not enter any of the CLOSED
nodes. The length of the minimal path from x to the goal
that does not pass through any CLOSED node is therefore a
lower bound on the remaining optimal path. This is equiva-
lent to a path that goes around the rectangle that surrounds
the CLOSED nodes. The shortest path that passes through
one of the pivots, PV (r, x), is a lower bound for this. �

It is easy to see that hBOX (x, r) ≥ hbase(x). As a result,
it is likely that the number of expanded nodes will be smaller
with hBOX (x, r) than with hbase(x) (but not necessary, see
Holte (2010)). Next we introduce our algorithm BOXA* and
a number of enhanced variants.

BOXA*
BOXA* maintains a list RD of disjoint, unconnected rect-
angles which surround CLOSED nodes for each direction
D ∈ {North,East, South,West} relative to g. An exam-
ple is shown in Figure 2(a) where RN is colored red, RW

is colored purple and RE is colored orange. RS is empty.
For node x, hBOX (x, rD) is calculated for every rectangle
rD ∈ RD that blocks x from g. That is, x and g are in oppo-
site cardinal zones with respect to rD.

Note that if x is on the same row or the same column as g
then there is only one direction D that may have rectangles
that block x from g. Otherwise, x is diagonal to g and there
are two directions that might have rectangles which block x
from g. For example, if x is southwest to g then rectangles
from both RS and RW may block x from g. Each rectan-
gle produces a lower-bound on the solution cost, thus the
maximal hBOX value among them can be used as the (path
admissible) heuristic value. Thus, the full (single-parameter)
version of hBOX is defined with respect to a given cell x and
all rectangles that block x from g:

hBOX (x) = max
rd∈RD s.t. rd blocks x from g

hBOX (x, rd)

For example, assume that cell x is generated in Fig-
ure 1(left). While MD(x) = 5, hBOX (x) = 11 as we must
make 6 vertical moves to get to one of the pivots and con-
tinue to the goal, due to the (single) west rectangle rW .
Finally, note that if a node x is inside a rectangle r when
computing hBOX (x, r), only a sub-rectangle of r that does
not contain x should be considered. For example, in the left
side of Figure 2(a), x1 is within the (single) west rectan-
gle rW . Thus, when computing hBOX (x1, rW) only the sub-
rectangle that contains the three nodes right of x1 is relevant.

Maintaining the Rectangles
In the beginning of the search, there are no rectangles as
CLOSED is empty. Since CLOSED grows whenever a node
is expanded, the rectangles can possibly change after each
expansion. There are three cases when a node x is expanded
which are covered next.

Case 1: If a node x1, which is inside a rectangle r is
expanded, then r remains unchanged. This case is demon-
strated in Figure 2 where the west rectangle, rW is shown
before (a) and after (b) the expansion of x1.

Case 2: If a node x2, which borders a rectangle r is ex-
panded, then r needs to be extended to also include x2. This
process is shown in Figure 2 where the west rectangle, rW
is shown before (b) and after (c) the expansion of x2.2

Case 3: If a node x3, which does not border any rectangle
rD ∈ RD in a relevant direction D (based on the location of
x3 with respect to g) is expanded, then a new rectangle r′D
is created and added to RD. This process is shown in Fig-
ure 2. The south rectangle, rS (in yellow) is shown before
the expansion of x3 (c). Then, after x3 is expanded, a new
rectangle r′S is created (d). In principle, due to this case there

2In theory, if a node which borders two rectangles in the same
direction is expanded, these rectangles can be merged. However,
this never happened in our experiments.

122

Figure 2: (a:) initial state (b:) no enlarging (c:) enlarging (d:) multiple rectangles (e:) Lazy Evaluation (f:) Recursive hBOX

can be several disjoint rectangles in RD for some direction
D (as just shown for RS). In our experiments there was usu-
ally only a single rectangle in each direction, and never more
than two. Moreover, when computing hBOX (x), not every
rectangle from the relevant list RD blocks x from g. For ex-
ample, in Figure 2(d), even though y1 and y2 are south to g,
none of the south rectangles blocks them. Finally, note that
when s is expanded, then CLOSED grows from empty to in-
clude s. Therefore, s does not border any rectangle and the
initial rectangles are constructed due to case 3.

Implementation of BOXA*
BOXA* is mainly based on A*, with some additional over-
head for computing the new heuristic and maintaining the
rectangles. When BOXA* generates a node n, the following
operations are performed:

1. Find the zone of n with respect to the goal; this is done by
a simple comparison of the (x, y)-coordinates of n with
those of g.

2. Iterate over the rectangles in each relevant direction (in-
duced by n’s zone), and check if they block n from the
goal, i.e., check if n is either adjacent to or inside any of
the rectangles. In the latter case (n is inside a rectangle r),
consider only a sub-rectangle of r that doesn’t contain n.

3. For every rectangle that blocks n from the goal, compute
hBOX . The computation of hBOX is composed of com-
puting the distance to the two pivots, and applying hbase

(MD) to each pivot.

4. Take the maximum between the lower-bounds induced by
the different rectangles (step 3).

When a node n is expanded, some of the rectangles in step
2 need to be extended (as explained in Section). Further-
more, if one of the relevant directions induced by the zone
of n (step 1) had no rectangles that blocks n from g, a new
rectangle is generated. Both these operations (extending a
rectangle and creating a new rectangle) are computationally
inexpensive. All of the above generation and expansion op-
erations of nodes consume a time that is at most linear in the
number of rectangles. In practice, the number of rectangles
from each direction was usually 1 (and never more than 2).
Thus, the additional overhead of BOXA* compared to A*
for every node generation and expansion is effectively con-
stant. The memory consumption of BOXA* is also linear in
the number of rectangles, as each rectangle is stored using
two coordinates (the northwest and southeast corners). Thus,

Figure 3: A* vs BOXA* with a 3× 7 obstacle

the overall additional memory consumption of BOXA* is
constant in practice.

Reduction in Node Expansions of BOXA*
Potentially, BOXA* may significantly reduce the number of
nodes expanded, but this greatly depends on the specific in-
stance and on the exact location of obstacles with respect
to s and g. Consider the grid in Figure 3 where the start s
and the goal g are in opposite sides of a rectangular obsta-
cle of height H and width W . Numbers inside cells are their
f -values. A* will expand the entire triangle left to start be-
fore it goes around the obstacle as shown in Figure 3(left).
This will expand H2/2 +H/2 +W + 2 nodes. In contrast,
BOXA* will only expand 3H/2 + W + 2 nodes as shown
in Figure 3(right). When H is large and W is small BOXA*
will have a quadratic reduction in the number of nodes ex-
panded compared to A*. For example, consider a rectangu-
lar obstacle of size 1, 000× 4. In this case BOXA* expands
1, 506 nodes while A* expands 500, 506 nodes. However,
when H = 4 and W = 1, 000, BOXA* expands 1, 008
nodes while A* expands 1, 014 nodes. Furthermore, assume
that we swap the locations of s and g and search from g to s.
Here, A* will expand all of the nodes in the rightmost col-
umn and then go below the obstacle directly to s. BOXA*
(and any other algorithm with no preprocessing) will not be
able to prune any node and will do the exact same work as
A*. In general BOXA* will be most efficient if s and g are
blocked by a long obstacle, but this is not known a priori to
the solver without any preprocessing.

Enhancements of BOXA*
We next cover two enhancements for BOXA*.

123

Lazy Expansion of Nodes
We note that when x is chosen for expansion, we can op-
tionally re-calculate f(x) based on the new shape of the
rectangles in the RD lists of the relevant directions. If this
increases f(x) above the minimal f -value in OPEN then x
may remain in OPEN with its new f -value along the same
principle used by Lazy A* (Tolpin et al. 2013). Therefore,
we call this variant BOXA∗l . This change-priority() opera-
tion is lighter than a full expansion. In change-priority() we
re-insert a node x with its new f -value. In a standard heap
implementation of a priority queue this incurs O(log(M))
time where M is the number of nodes in OPEN. By con-
trast, expansion of a node is removing it from OPEN and
adding b children. This incurs a larger overhead than change-
priority() because it involves b+1 (one deletion and b addi-
tions) operations on OPEN, each of them takes O(log(M))
time. In addition, it involves the generation of b new nodes.
Therefore, change-priority() is a lighter operation. However,
as shown by Tolpin et al. (2013), change-priority(x) will
only be beneficial if x remains in OPEN and is never ex-
panded. This will happen if the new f(x) is larger than C∗,
the cost of the optimal solution. In this case, the expansion
of x is saved. If, however, it turns out that x will be expanded
in later stages then change-priority(x) is redundant and only
incurs extra overhead. Thus, activating change-priority(x) is
helpful only for some of the nodes.

Consider the example in Figure 2(e). The left side shows
the grid after expanding node s. The number in each cell is
its f -value. There is only one closed rectangle and it con-
tains s only. For node c, g(c) = 1 and h(c) = 5 because it
needs to go around the rectangle to reach g. In the next two
steps nodes a and b are expanded and the rectangle is up-
dated to contain {s,a,b} as shown in Figure 2(e) on the right.
Now the best node in OPEN will be c. When extracting node
c its heuristic is re-evaluated to h(c) = 7 and therefore we
have that f(c) = 8. There are now two options. The first is
to expand c right away and generate its children. However,
since we have nodes in OPEN with f(n) = 6, the second
option is to choose not to expand c but place it in open with
f(c) = 8 via the change-priority() function. In fact, in this
example, c might never be expanded.

Recursive hBOX

In Definition 1 (of hBOX), the h-value of reaching from a
pivot q to the goal is MD (hbase). However, instead of us-
ing MD, hBOX can be recursively applied on the pivots as
well. Thus, we define hBOX r

, a recursive version of hBOX ,
as follows:

hBOXr (x, r) = min
q∈PVr(x)

(hbase(x, q)+hbase(q, q
′)+hBOXr (q

′))

where q′ is the other corner of r that is adjacent to q in the
cordiality opposite of x . For example, if x is north to r and q
is the northwest corner of r, then q′ is the southwest corner
of r. The full (single-parameter) version of hBOX r is thus
defined:

hBOX r
(x) = max

rd∈RD s.t. rd blocks x from g
hBOX r

(x, rd)

Figure 4: isound1. Left: scenarios 1, 2. Right: scenario 3

Figure 2(f) demonstrates the contribution of hBOX r
when

h(x) is computed. The north rectangle blocks x from g.
There is only one pivot q as the other corner is outside
of the map. Since hBOX applies MD on the pivot nodes,
hBOX (x, r) =hbase(x, q)+hbase(q, g) =3+7 =10. In con-
trast, when computing hBOX r (x), hBOX r is applied recur-
sively on q′, thus hBOX r (x) = hbase(x, q) + hbase(q, q

′) +
hBOX r

(q′). When computing hBOX r
(q′), the west rect-

angle is considered and q′′ becomes the new pivot, thus
hBOX r

(q′) = hbase(q
′, q′′) + hbase(q

′′, q′′′) + hBOX r
(q′′′).

Finally, hBOX r
(q′′′) = hbase(q

′′′, g) = 1, as it is not
bounded by any rectangle. Therefore, hBOX r

(q′) = 1+ 4+
1 = 6. As a result, hBOX r

(x) = 3 + 3 + 6 = 12. We use
BOXA∗r to denote the recursive variant of BOXA* (that uses
hBOX r instead of hBOX), and BOXA∗lr to denote the variant
that is both lazy and recursive.

Experimental Results
We compared all our variants on maps from Dragon Age:
Origins (DAO) (all brc maps and the isound1 map) and on
Mazes with different corridor widths (1, 2, 4); all are from
the movingai repository (Sturtevant 2012). The improve-
ment of the BOXA* variants over A* varies dramatically
along different maps and scenarios. In some cases, for ex-
ample, when there is a line-of-sight between the start and
the goal, A* cannot be improved. However, in other cases
there is almost quadratic improvement in the number of node
expansions, as explained above. We demonstrate this trend
on three scenarios of the isound1 map. The start and goal
cells of Scenario 1 are labeled S1 and G1 in Figure 4 (left).
These cells have line-of-sight and thus all algorithms pro-
ceed directly to the goal. Scenario 2 (S2 and G2) is also
shown in Figure 4 (left). The light green cells are those that
were expanded by A* and the dark green cells are those ex-
panded by both BOXA∗lr and A*. Clearly, a large improve-
ment is observed. A* expanded 214 nodes while BOXA∗lr
expanded 40 nodes, an improvement factor of 5.4. Another
major improvement is also evident for Scenario 3 (shown
in Figure 4 (right)). Here, A* expanded 1,058 nodes while
BOXA∗lr expanded 363 nodes, a larger reduction in expan-
sions compared to Scenario 2, but a smaller improvement
ratio of 2.9.

Table 1 reports the number of node expansions and gener-

124

Type Best improvement factor Average node expansions Average node generations
BOXA* BOXA∗l BOXA∗r BOXA∗lr A* BOXA* BOXA∗l BOXA∗r BOXA∗lr A* BOXA* BOXA∗l BOXA∗r BOXA∗lr

DAO brc 3.3 3.9 3.3 4.0 6,796 5,931 5,808+427 5,902 5,605+673 12,655 7,958 7,834 7,970 7,637
isound 3.0 3.2 3.1 5.4 235 197 186 + 25 195 178 + 28 490 330 321 329 312

Mazes
w=1 1.6 1.6 1.6 1.6 24,673 23,280 23,265 + 23 23,119 22,996 + 64 24,709 23,317 23,302 23,156 23,033
w=2 2.0 2.1 2.0 3.2 27,088 24,767 24,722+103 24,526 23,808+174 40,677 26,285 26,217 26,030 25,250
w=4 2.2 2.2 2.2 2.7 31,276 29,298 29,244+257 29,120 28,638+404 54,804 33,931 33,842 33,701 33,137

Table 1: Best improvement factor and average node expansions and generations for the different BOXA* variants

ations for all our variants on all map types. The first columns
present the improvement factor over A* of the best scenario
on each map type. Basic BOXA* reduced the number of
node expansions by a factor that ranges from 1.6 to 3.3 while
BOXA∗lr further increased the improvement factor up to 5.4
(as shown in Figure 4(right) for scenario 2). The following
columns show the average number of node expansions and
node generations over all maps and scenarios. For BOXA∗l
and BOXA∗lr the number of change-priority calls of lazy
expansion is shown after the plus sign (+). Since in many
scenarios there was a line-of-sight between the start and the
goal, the average improvement is relatively modest. BOXA*
resulted in an average reduction of 9.3% in node expansions
and 29% in node generations. Each of the BOXA* enhance-
ments further improve the results and BOXA∗lr resulted in an
average reduction of 13.3% in node expansions and 33.1%
in node generation. Importantly, all BOXA* variants were
never worse than A* in any map and scenario in terms of
node expansions/generations. Thus there is no risk in using
BOXA* and its enhancements in terms of node counts.

While the BOXA* variants are never worse in terms of
node expansions, this is not the case in terms of runtime.
The operations that maintain the rectangles and calculate
hBOX are asymptotically constant, but they incur a larger
CPU overhead compared to A*. This is especially evident in
small maps, where the overhead of node-insertions is small
due to the small size of the open-list (heap). Therefore, the
runtime of all BOXA* variants was larger than A* on aver-
age. Nonetheless, BOXA* can still be better in terms of run-
time for larger maps. For example, when multiplying size of
the isound1 map by 10, all BOXA* variants had a better run-
time than A* on average, and in some scenarios the improve-
ment was by up to a factor of 4. Finally, our implementation
of BOXA* is relatively basic, but more low-level implemen-
tation optimizations are likely to speed up the runtime signif-
icantly. Meanwhile, we only recommend using BOXA* and
its variants for domains that 1) have many obstacles, thus the
start and the goal are not likely to share a line-of-sight; and
2) the maps in the domain are either large or the cost of node
generations is high (e.g. if it requires a physical sensing).

Conclusions
We presented an effective method to strengthen MD on 2D
grids without preprocessing and without significant addi-
tional memory. In terms of node expansions and generations,
all BOXA* variants are never worse than A* and in many
scenarios they might provide a significant improvement even
in time. Improvements vary by instance based on the shapes
of the obstacles and the relative locations of start and goal.

We believe that this work is mainly a proof of concept for
a much larger research. First, BOXA* can be combined with
other orthogonal approaches, especially those that do not
need preprocessing nor significant additional memory such
as jump point search (Harabor and Grastien 2011). Then,
BOXA* can be generalized to 3D grids where boxes will
replace the rectangles and to 8-connected grids where poly-
gons will replace the rectangles. Finally, we believe that the
idea of using the closed-list to improve the heuristic for gen-
erated nodes can be applied to other polynomial domains
(e.g. roadmaps) and even to exponential domains (e.g. puz-
zles). For example, one way to generalize to other domains
(e.g., exponential domains) is to embed them (e.g., by fast-
map (Cohen et al. 2018)) into a Euclidean, even 2D, domain
and then use our heuristics there.

Acknowledgments
This work was supported by Israel Science Foundation (ISF)
grant #844/17 to Ariel Felner and Eyal Shimony, by BSF
grant #2017692, by NSF grant #1815660 and by the Frankel
center for CS at BGU.

References
Botea, A.; and Harabor, D. 2013. Path Planning with Com-
pressed All-Pairs Shortest Paths Data. In ICAPS, 293–297.
Cohen, L.; Uras, T.; Jahangiri, S.; Arunasalam, A.; Koenig,
S.; and Kumar, T. K. S. 2018. The FastMap Algorithm for
Shortest Path Computations. In IJCAI, 1427–1433.
Harabor, D. D.; and Grastien, A. 2011. Online Graph Prun-
ing for Pathfinding On Grid Maps. In AAAI, 1114 – 1119.
Holte, R. C. 2010. Common Misconceptions Concerning
Heuristic Search. In SoCS, 46 – 51.
Karpas, E.; and Domshlak, C. 2012. Optimal Search with
Inadmissible Heuristics. In ICAPS, 92–100.
Sturtevant, N. R. 2012. Benchmarks for Grid-Based
Pathfinding. IEEE Trans. Comput. Intell. AI Games 4(2):
144–148.
Sturtevant, N. R.; Traish, J. M.; Tulip, J. R.; Uras, T.;
Koenig, S.; Strasser, B.; Botea, A.; Harabor, D.; and Rabin,
S. 2015. The Grid-Based Path Planning Competition: 2014
Entries and Results. In SoCS, 241–251.
Tolpin, D.; Beja, T.; Shimony, S. E.; Felner, A.; and Karpas,
E. 2013. Toward Rational Deployment of Multiple Heuris-
tics in A. In IJCAI, 674–680.
Zhang, Z.; Sturtevant, N. R.; Holte, R. C.; Schaeffer, J.; and
Felner, A. 2009. A* Search with Inconsistent Heuristics. In
IJCAI, 634–639.

125

