
Surrogate Assisted Optimisation for Travelling Thief Problems

Majid Namazi,1,2 Conrad Sanderson,1,2 M.A. Hakim Newton,2 Abdul Sattar2

1 Data61 / CSIRO, Australia
2 Griffith University, Australia

Abstract

The travelling thief problem (TTP) is a multi-component
optimisation problem involving two interdependent NP-hard
components: the travelling salesman problem (TSP) and the
knapsack problem (KP). Recent state-of-the-art TTP solvers
modify the underlying TSP and KP solutions in an iterative
and interleaved fashion. The TSP solution (cyclic tour) is typ-
ically changed in a deterministic way, while changes to the
KP solution typically involve a random search, effectively re-
sulting in a quasi-meandering exploration of the TTP solu-
tion space. Once a plateau is reached, the iterative search of
the TTP solution space is restarted by using a new initial TSP
tour. We propose to make the search more efficient through
an adaptive surrogate model (based on a customised form of
Support Vector Regression) that learns the characteristics of
initial TSP tours that lead to good TTP solutions. The model
is used to filter out non-promising initial TSP tours, in effect
reducing the amount of time spent to find a good TTP so-
lution. Experiments on a broad range of benchmark TTP in-
stances indicate that the proposed approach filters out a con-
siderable number of non-promising initial tours, at the cost of
omitting only a small number of the best TTP solutions.

Introduction
Real-world optimisation problems composed of multiple in-
terdependent components are very challenging: solving each
component in isolation does not guarantee finding an op-
timal solution to the whole problem (Michalewicz 2012;
Bonyadi et al. 2019). The travelling thief problem (TTP)
combines two interdependent components: the travelling
salesman problem (TSP) and the knapsack problem (KP),
both NP-hard problems (Bonyadi, Michalewicz, and Barone
2013; Polyakovskiy et al. 2014). In TTP, items are scat-
tered among a set of cities; a thief goes on a cyclic tour
through the cities and collects a subset of the items into
a rented knapsack. As more items are collected, the speed
of the thief decreases. This increases the travelling time
and hence the renting cost of the knapsack. The aim in
solving TTP is to maximise total gain by simultaneously
maximising the total profit of the collected items and min-
imising the travelling time. TTP can be viewed as a proxy
for the arc-routing logistic problems such as mail deliv-
ery, garbage collection, and network maintenance problems

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where the order of visiting places or nodes is as important
as the length of the taken path (Mei, Li, and Yao 2014;
Corberán and Laporte 2015).

Recent state-of-the-art solvers for TTP (El Yafrani and
Ahiod 2018; Namazi et al. 2019b) solve the TSP and KP
components in an iterative and interleaved fashion using
a dedicated solver for each component. The TSP solution
(cyclic tour) is typically changed in a deterministic way,
while changes to the KP solution (item collection plan) typ-
ically involve a random search. This effectively results in
a quasi-meandering exploration of the TTP solution space.
Upon reaching a plateau, the iterative search of the TTP so-
lution space is restarted by employing a new initial TSP tour.
We have empirically observed that the final objective value
does not vary appreciably for similar initial cyclic tours, sug-
gesting that the overall search for a TTP solution with such
solvers involves redundant exploration of the solution space.
Furthermore, a subset of initial TSP tours (determined dur-
ing the search) will often lead to poor TTP solutions.

We propose to increase the efficiency of TTP search via
filtering out non-promising initial TSP tours through the use
of an adaptive surrogate model. Various surrogate models
have been previously used to speed up computationally ex-
pensive simulations in fields such as groundwater modelling
(Asher et al. 2015). The proposed surrogate model approx-
imates the final TTP objective value for any given initial
TSP tour. The model is built and automatically updated dur-
ing the iterative search for a TTP solution. It is based on
non-linear Support Vector Regression (Smola and Schölkopf
2004) with a novel kernel function for measuring the simi-
larity between TSP tours. To our knowledge, this is the first
time surrogate assisted optimisation is used within the con-
text of TTP. Experiments on a wide subset of benchmark
TTP instances show that our proposed approach filters out
a considerable number of the non-promising initial cyclic
tours while missing only a small number of the best TTP
solutions.

Background

Each TTP instance has a set {1, . . . ,m} of m items and a
set {1, . . . , n} of n cities. The distance between each pair of
cities i �= i′ is d(i, i′) = d(i′, i). Each item j is located at city
lj > 1. Each item has weight wj > 0 and profit πj > 0.

The thief starts a cyclic tour at city 1, travels between

The Thirteenth International Symposium
 on Combinatorial Search (SoCS 2020)

111

CLK InitCP TSPSolverTTP Instance Cyclic Tour
Initial

Cyclic Tour
Initial

Collection Plan
Initial

KPSolverimprovement?terminate?
No

No

Best Obtained
Objective Value

Obtained
Objective Value

Yes

Yes

Process Cyclic Tour

Figure 1: Structure of a typical restart-based cooperative
solver for TTP.

Surrogate Model

Figure 2: Addition of a surrogate model to the TTP solver in
Fig. 1 in order to filter out non-promising initial tours.

cities (visiting each city once), collects a subset of the items
available in each city, and returns to city 1. The tour is rep-
resented by using a permutation of n cities. A given tour is
represented as c, with ck = i indicating that the k-th city in
the tour c is i, and c(i)= k indicating that the position of city
i in the tour c is k. Here c1 = 1 and c(1) = 1. A knapsack with
a rent rate R per unit time and a weight capacity W is rented
by the thief to hold the collected items. The item collection
plan is represented by p, with pi ∈ {0, 1} indicating the col-
lection state of item i. An overall solution that provides a
tour c and a collection plan p is expressed as 〈c, p〉.

The total weight of the items collected from city i is de-
noted by Wp(i) =

∑
∀lj=i wjpj . The total weight of the items

collected from the initial k cities in the tour c is denoted
by Wc,p(k) =

∑k
k′=1 Wp(ck′). The thief traverses from city

ck to the next city with speed vc,p(k). The speed decreases
as Wc,p(k) increases. The speed at the city ck is given by
vc,p(k)= vmax −Wc,p(k) · (vmax − vmin)/W , where vmin and vmax

are minimum and maximum speeds, respectively.
Given a TTP solution 〈c, p〉, the total profit is

P (p) =
∑m

i=1 piπi, the travelling time to city ck is
Tc,p(k)=

∑k−1
k′=1 d(ck′ , ck′+1)/vc,p(k

′), and the total travelling
time is T (c, p)=Tc,p(n+1)=Tc,p(n) + d(cn, c1)/vc,p(n). The
goal of a TTP solution is to maximise the following objec-
tive function over any viable c and p:

G(c, p) = P (p)−R · T (c, p) (1)
Recent solvers for TTP follow a cooperative strategy by

solving the TSP and KP components in an interleaved fash-
ion using a dedicated solver for each component (El Yafrani
and Ahiod 2018; Namazi et al. 2019a; 2019b). Fig. 1 shows
how any given TTP instance is solved by these cooperative
solvers.

For each given TTP instance, the Chained Lin-Kernighan
(CLK) heuristic (Applegate, Cook, and Rohe 2003) is used
to generate an initial cyclic tour. An initial collection plan
is then obtained by a heuristic such as Insertion (Mei, Li,
and Yao 2014) or PackIterative (Faulkner et al. 2015). Next,
the TSPSolver and KPSolver functions are invoked in an in-
terleaved fashion to solve the TSP and KP components in
successive rounds. In each iteration, in order to improve the
objective value, the TSPSolver deterministically chooses the
best tour modifications, while the KPSolver uses a stochastic
local search for improving the collection plan.

If the objective value is not improved in a round, the
solver restarts by asking the CLK routine to generate a new
initial tour, provided that the termination condition is not
met. If the termination condition is met, the best obtained
objective value and the corresponding solution are returned.

Proposed Surrogate Model

Using the cooperative strategy shown in Fig. 1, we have
empirically observed that for similar initial cyclic tours,
the final objective value does not vary much. This suggests
that the overall search for a TTP solution with cooperative
solvers involves redundant exploration of the solution space.
Furthermore, a subset of initial TSP tours (determined dur-
ing the search) will often lead to poor TTP solutions.

Considering this semi-deterministic nature of the coop-
erative solvers, we propose a surrogate model to emulate
the set of functionality enclosed in the dotted red rectangle
in Fig. 1. The surrogate model is used as shown in Fig. 2
within the blue dashed rectangle. For each generated initial
tour, the surrogate model provides an approximation of the
final TTP objective value. If the generated initial tour ap-
pears non-promising, it is disregarded from further optimi-
sation (ie., filtered out). Otherwise, the generated initial tour
is allowed to proceed for further iterative optimisation.

For the surrogate model we propose an adaptive learning
approach employing non-linear kernel-based support vec-
tor regression (SVR) (Shawe-Taylor and Cristianini 2004;
Smola and Schölkopf 2004). While solving of a given TTP
instance, the surrogate model transitions between several
phases as shown in Fig. 3: initialisation, training, testing,
and applying. The phases and transitions between phases are
elucidated below.

Initial Phase Training Phase

Testing PhaseApplying Phase

Figure 3: Transitions between phases of the surrogate model.

112

Initial Phase

The given TTP instance is solved via restarting for a prede-
fined number of times t, where each run uses a new initial
tour. For any run r in this phase, the initial tour cr and the
corresponding obtained final objective value gr are kept as a
pair 〈cr, gr〉 in a training set.

Training Phase

To aid training the SVR, the training set is first normalised
as follows. Considering gmin and gmax as the minimum and
maximum objective values in the training set, each gr is
mapped to the [0,1] interval via:

n(gr) =
gr − gmin

gmax − gmin
(2)

The resulting set X={〈c1, n(g1)〉, 〈c2, n(g2)〉, ...,〈ct, n(gt)〉}
is used for training the kernel-based SVR. Given a tour c,
SVR approximates the normalised final objective value via:

n(ĝ) =
∑t

r=1
(αr − α∗

r) · k(cr, c) + b (3)

where the SVR parameters b, αr and α∗
r for r ∈ [1, t] are

computed as per (Shawe-Taylor and Cristianini 2004; Smola
and Schölkopf 2004). For the kernel function k(ca, cb) we
use a customised form of Gaussian radial basis function:

k(ca, cb) = exp(−γ · Φ(ca, cb)) (4)

where γ is a hyper-parameter, while Φ(ca, cb) is a measure
of distance between tours ca and cb based on the positions
of the cities in the tours:

Φ(ca, cb) =
1

n
·
∑n

j=1

|ca(j)− cb(j)|
n− 1

(5)

Here, c(j) indicates the position of city j in cyclic tour c,
hence |ca(j) − cb(j)| is in the [0, n − 1] range. As such,
Φ(ca, cb) is in the [0, 1] range.

The approximate final objective value ĝ is obtained by re-
versing the normalisation:

ĝ = n(ĝ) · (gmax − gmin) + gmin (6)

Testing Phase

Here the surrogate model is tested to ensure it has adequate
accuracy and is retrained if required. The given TTP instance
is further solved using new initial tours for λ · t times, where
t is the number of instances in the training set and λ is em-
pirically selected as 0.20. In every run r, for each generated
initial cyclic tour c, the actual final objective value g as well
as the approximate final objective value ĝ are obtained.

There are two conditions where retraining is triggered us-
ing an expanded training set. Let us first define a Normalised
Error (NE) measure as:

NE = n(g)− n(ĝ) (7)

For any run which has NE > e, where e is a predefined er-
ror limit empirically set to 0.02, the corresponding initial
tour and actual final objective value are kept in a tempo-
rary buffer. The temporary buffer is initialised to be empty
at each start of the testing phase.

A form of moving cumulative average (Gama 2010) of
squares of all obtained NE values is kept, referred to as mean
squared normalised error (MSNE). The MSNE is set to zero
at each start of the testing phase. For each run (with r starting
at 1), MSNE is updated using:

MSNE[new] = MSNE[old] +
NE2 −MSNE[old]

r
(8)

The first condition for retraining is as follows. If a run is
encountered that has g < gmin or g > gmax, the corresponding
initial tour and final objective value are added to the tem-
porary buffer, followed by incorporating the buffer into the
training set and immediately restarting the training phase.

The second condition is as follows. If MSNE > e after pro-
cessing all λ · t initial tours, the temporary buffer is incorpo-
rated into the training set and the training phase is restarted.

Applying Phase

Here the surrogate model is employed for filtering out (dis-
regarding) non-promising initial tours. Retraining may also
be triggered in a similar manner to the testing phase.

We define maximum tolerable error (MTE) as:

MTE = β ·
√

MSNE (9)

where β is a hyper-parameter. For a given initial tour c, the
corresponding approximate normalised final objective value
n(ĝ) is obtained. If n(ĝ) ≥ 1 − MTE, the tour c is allowed
to proceed for further iterative optimisation. Otherwise, the
tour is filtered out either when n(ĝ) < −MTE, or with a prob-
ability of

√
1− (n(ĝ) + MTE)2. Fig. 4 shows how the prob-

ability of filtering out c is based on the value of n(ĝ).
Whenever an initial tour c is not filtered out, the given

TTP instance is solved using c and the actual final objective
value g is obtained. The corresponding NE is computed as
per Eqn. (7), followed by updating MSNE as per Eqn. (8).

Similar to the testing phase, if NE > e, the corresponding
initial tour and actual final objective value are stored in the
temporary buffer initialised in the preceding testing phase.
If g < gmin or g > gmax, the corresponding initial tour and

+

+

1

1

+

n(ĝ): Predicted normalised objective value

0.5

+0.5

P
ro
b
a
b
il
it
y
o
f
fi
lt
er
in
g
o
u
t
c

+
-0.5 1−MTE

√
1− (n(ĝ) +MTE)2

+−MTE
+

+

+
0

Figure 4: Probability of filtering out tour c based on its ap-
proximate normalised final objective value n(ĝ).

113

���

���

���
���

TTP Category A

���
���

���
���

TTP Category B

���

���

���
���

TTP Category C

Figure 5: x-axis: average percentage of the filtered out initial cyclic tours; y-axis: average number of the missed best solutions
(out of 10). Each distinct point corresponds to a configuration of β · √MSNE as defined in Eqn. (9). The dashed diagonal line
represents the number of expected missed best solutions when random filtering is used instead of filtering based on the surrogate
model. Better performance is indicated by an operating point that is further away from the diagonal line, moving towards the
bottom right corner.

final objective value are added to the temporary buffer, fol-
lowed by incorporating the buffer into the training set and
immediately restarting the training phase.

Furthermore, retraining occurs whenever MSNE > e or
the number of runs with NE > e exceeds 1

2
|X|, where |X| is

the current cardinality of the training set. This approach aims
to increase the size of the training set during the early stages
of optimisation, while reducing the likelihood of retraining
on large sets during later stages.

The rationale behind the probabilistic method to filter out
non-promising initial tours is twofold. (1) There is always a
chance of under-prediction of the final objective value, es-
pecially for (desirable) large final objective values. (2) Not
filtering out tours with small predicted final objective values
makes the updated MSNE value more accurate over the runs
in this phase.

Experiments

As a baseline TTP solver we use the recently proposed co-
operative coordination (CoCo) solver (Namazi et al. 2019b).
We extend the solver with the proposed surrogate model and
refer to it as CoCo-SM.

We use a broad subset of medium and large-sized
benchmark TTP instances introduced by Polyakovskiy et
al. (2014). Considered instances are placed into 3 categories.
Each category has 32 instances with a range of 574 to 7397
cities. In category A, there is only one item in each city;
the profits and weights of the items are strongly correlated;
knapsack capacity is relatively small. In category B, there
are 5 items in each city; the profits and weights of the items
are uncorrelated; the weights of the items are similar to each
other; knapsack capacity is moderate. In category C, there
are 10 items in each city; the profits and weights of the items
are uncorrelated; knapsack capacity is high.

Experiments were performed with β ∈ {0, 1, 2, 3} for
computing MTE in Eqn. (9). Both solvers were run on each
TTP instance 10 times. In each run, CoCo solver was ini-
tially run for 1000 restarts on each instance. CoCo-SM was
then run on the same instance using the same set of 1000
initial tours generated and used by CoCo for that instance.
As such, we can see the effects if the CoCo-SM solver was

used instead of the CoCo solver using the same set of the
initial tours.

The initial tours and the corresponding actual final objec-
tive values in the first 10% of the restarts in each run on
each instance were used to build the initial surrogate model
in CoCo-SM. For the custom RBF kernel in Eqn. (4), the
hyper-parameter γ was set to 1 based on preliminary exper-
iments.

Table 1 shows the results with the configuration of β = 2
in Eqn. (9). The results are presented as the percentage of
filtered out tours and the corresponding number of missed
best solutions (out of 10 runs). In a “missed best solution”,
an initial tour that led to the best possible solution in a run is
incorrectly filtered out. The higher the percentage of filtered
out tours, the better. The lower number of missed best solu-
tions, the better. The results show that on average about 30%
of initial tours are filtered out at the cost of missing about 1
best solution out of 10.

The overhead for training and using the surrogate model
is overall negligible. For example, for the hardest to solve
instance (the last instance in category C), around 10,000 sec-
onds are required to process 1000 initial tours by the CoCo
solver, while about 15 seconds are required to train and use
the surrogate model during processing of all the tours in
CoCo-SM. As such, if 30% of the initial tours are filtered
out, the solver requires about 30% less time to solve a given
TTP instance.

Fig. 5 shows the results for β ∈ {0, 1, 2, 3} in Eqn. (9),
where the the average number of the missed best solutions
is plotted against the average percentage of filtered out ini-
tial tours. The dashed diagonal line represents the number
of expected missed best solutions when random filtering is
used instead of filtering based on the surrogate model. As
such, better performance is indicated by an operating point
that is further away from the diagonal line, moving towards
the bottom right corner.

The results indicate that the proposed surrogate model
achieves considerably better filtering than simple random fil-
tering. The results also show that there is a trade-off: the
larger the percentage of filtered out tours, the higher the
chance of missing the best solution.

114

Table 1: Average percentage of the filtered out initial cyclic
tours with the corresponding number of missed best solu-
tions (out of 10 runs) using the CoCo-SM solver with the
configuration of β = 2 in Eqn. (9). Three categories of
TTP instances are used. Category A: knapsack capacity is
relatively small; 1 item in each city; weights and profits of
items are highly correlated. Category B: knapsack capac-
ity is moderate; 5 items in each city; weights and profits of
items are uncorrelated; weights of all items are similar. Cat-
egory C: knapsack capacity is high; 10 items in each city;
weights and profits of items are uncorrelated.

% of filtered out tours num. missed best sol.

Instance A B C A B C

u574 36.7 42.8 33.5 0 0 0
rat575 33.4 32.4 37.7 1 3 1
p654 41.5 25.7 41.0 1 2 3
d657 25.8 31.0 20.9 2 1 0
u724 33.0 31.4 33.7 2 1 1
rat783 53.0 37.4 27.3 0 1 0
dsj1000 88.0 51.4 30.1 0 2 1
pr1002 20.9 55.6 41.1 0 3 4
u1060 36.2 47.0 42.6 0 0 0
vm1084 48.3 39.8 30.5 0 1 0
pcb1173 42.0 30.5 32.7 0 0 0
d1291 25.2 30.8 33.4 0 0 0
rl1304 57.6 41.0 43.9 0 0 0
rl1323 51.6 33.9 40.1 0 1 1
nrw1379 30.8 14.8 13.6 1 0 0
fl1400 41.9 56.6 58.3 0 2 0
u1432 26.7 14.8 10.6 1 1 2
fl1577 43.5 30.7 29.5 1 0 0
d1655 41.4 22.5 24.2 2 0 0
vm1748 27.9 41.3 33.9 0 0 2
u1817 38.8 13.6 6.2 2 0 0
rl1889 39.1 22.6 28.3 0 0 2
d2103 44.5 57.4 52.0 4 4 1
u2152 25.7 15.4 17.2 0 0 0
u2319 30.4 28.4 23.3 1 4 0
pr2392 40.6 18.1 17.3 0 1 1
pcb3038 26.9 15.6 13.4 1 0 2
fl3795 31.4 13.2 12.5 0 0 0
fnl4461 20.9 11.6 6.1 3 1 0
rl5915 25.8 24.9 18.7 1 2 2
rl5934 29.7 35.2 30.8 1 1 2
pla7397 26.3 9.9 12.3 0 1 0
Average 37.0 30.5 28.0 0.75 1 0.78

Conclusion

We have proposed to increase the efficiency of recent TTP
solvers by incorporating a surrogate model that assists in
pruning the starting points for restart-based optimisation.

In recent TTP solvers, the solutions to the underlying
TSP and KP problems are changed in an iterative and in-
terleaved fashion. The TSP solution (cyclic tour) is typi-
cally changed in a deterministic way, while changes to the
KP solution typically involve a random search, resulting in
a quasi-meandering exploration of the TTP solution space.
Upon reaching a plateau, the iterative search of the TTP so-
lution space is restarted by employing a new initial TSP tour.

The proposed surrogate model, based on Support Vector
Regression with a novel kernel, adaptively learns the char-
acteristics of initial TSP tours that lead to good TTP solu-
tions. Non-promising initial TSP tours are detected and dis-
regarded, in effect reducing the amount of time spent to find
a good TTP solution.

Experiments on benchmark TTP instances show that the
proposed approach removes a considerable number of non-
promising initial tours, at the cost of missing a small number
of the best TTP solutions.

References
Applegate, D.; Cook, W.; and Rohe, A. 2003. Chained Lin-
Kernighan for large traveling salesman problems. INFORMS
Journal on Computing 15(1):82–92.
Asher, M. J.; Croke, B. F. W.; Jakeman, A. J.; and Peeters, L.
J. M. 2015. A review of surrogate models and their appli-
cation to groundwater modeling. Water Resources Research
51(8):5957–5973.
Bonyadi, M. R.; Michalewicz, Z.; Wagner, M.; and Neumann,
F. 2019. Evolutionary computation for multicomponent prob-
lems: opportunities and future directions. In Optimization in
Industry. Springer. 13–30.
Bonyadi, M. R.; Michalewicz, Z.; and Barone, L. 2013. The
travelling thief problem: The first step in the transition from
theoretical problems to realistic problems. In IEEE Congress
on Evolutionary Computation (CEC), 1037–1044.
Corberán, Á., and Laporte, G. 2015. Arc Routing: Problems,
Methods, and Applications. SIAM.
El Yafrani, M., and Ahiod, B. 2018. Efficiently solving the
Traveling Thief Problem using hill climbing and simulated an-
nealing. Information Sciences 432:231–244.
Faulkner, H.; Polyakovskiy, S.; Schultz, T.; and Wagner, M.
2015. Approximate approaches to the traveling thief problem.
In Annual Conference on Genetic and Evolutionary Computa-
tion, 385–392.
Gama, J. 2010. Knowledge Discovery from Data Streams.
Chapman and Hall/CRC.
Mei, Y.; Li, X.; and Yao, X. 2014. Improving efficiency of
heuristics for the large scale traveling thief problem. In Lecture
Notes in Computer Science (LNCS), Vol. 8886, 631–643.
Michalewicz, Z. 2012. Quo vadis, evolutionary computation?
In Lecture Notes in Computer Science (LNCS), Vol. 7311. 98–
121.
Namazi, M.; Newton, M. H.; Sattar, A.; and Sanderson, C.
2019a. A profit guided coordination heuristic for travelling thief
problems. In Symposium on Combinatorial Search.
Namazi, M.; Sanderson, C.; Newton, M. A. H.; and Sattar, A.
2019b. A cooperative coordination solver for travelling thief
problems. arXiv pre-print 1911.03124.
Polyakovskiy, S.; Bonyadi, M. R.; Wagner, M.; Michalewicz,
Z.; and Neumann, F. 2014. A comprehensive benchmark set
and heuristics for the traveling thief problem. In Annual Con-
ference on Genetic and Evolutionary Computation, 477–484.
Shawe-Taylor, J., and Cristianini, N. 2004. Kernel Methods For
Pattern Analysis. Cambridge University Press.
Smola, A. J., and Schölkopf, B. 2004. A tutorial on support
vector regression. Statistics and Computing 14(3):199–222.

115

