
Generalizing Multi-Agent Path Finding for Heterogeneous Agents

Dor Atzmon, Yonathan Zax, Einat Kivity,
Lidor Avitan, Jonathan Morag, Ariel Felner

Ben-Gurion University of the Negev
{dorat, sachsy, einatkiv, lidorav, moragj}@post.bgu.ac.il, felner@bgu.ac.il

Abstract

Multi-Agent Path Finding (MAPF) is the problem of finding
non-colliding paths for multiple agents. The classical prob-
lem assumes that all agents are homogeneous, with a fixed
size and behavior. However, in reality agents are heteroge-
neous. In this paper, we generalize MAPF to the case of gen-
eral, heterogeneous agents (G-MAPF). We then show how
two previous settings of large agents and k-robust agents are
special cases of G-MAPF. Finally, we introduce G-CBS, a
variant of the Conflict-Based Search (CBS) algorithm for G-
MAPF, which does not cause significant extra overhead.

1 Introduction

In the Multi-Agent Path Finding problem (MAPF) a plan is
needed for leading a set of agents from their start locations
to their goal locations, without collisions. MAPF is practi-
cally applicable in real-world problems, such as traffic con-
trol, robotics, and video games (Felner et al. 2017). Finding
plans that minimize some objective function (optimal so-
lutions) is NP-hard (Surynek 2010; Yu and LaValle 2013).
However, some algorithms manage to do so for dozens of
agents (Surynek 2012; Felner et al. 2018; Lam et al. 2019;
Gange, Harabor, and Stuckey 2019; Li et al. 2019a).

In classical MAPF the assumption is that each agent oc-
cupies only one location at each time step and that each ac-
tion applied is always successful. In reality, the environment
may be more complicated. In particular, agents can have dif-
ferent sizes (and occupy more than one location) and may
behave unexpectedly. Two important attempts did not make
the one-agent-per-one-location assumption. Li et al. (2019b)
extended MAPF to MAPF for large agents (LA-MAPF).
These large agents occupy multiple locations at each time
step, and collide when two agents overlap, i.e., jointly oc-
cupy at least one location at the same time. However, LA-
MAPF assumes that these agents have a fixed unchanged
size and that they cannot rotate. Atzmon et al. (2020b) stud-
ied the problem of k-Robust MAPF (kR-MAPF), for agents
that may experience up to k unexpected delays. As agents
may be delayed, an agent may located differently than orig-
inally planed. However, in kR-MAPF the assumption is that
the size of each agent is only a single location.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The two problems above were designed for specific types
of agents. In this paper, we suggest a more flexible and
general definition for agents of various types. We define
the G-MAPF problem, which generalizes MAPF for het-
erogeneous agents. In G-MAPF, different agents may have
different sizes or shapes, and different behaviors with re-
gards to movements and delays. We extend Conflict-Based
Search (CBS), the well known MAPF solver, to G-CBS for
G-MAPF. We will show how G-CBS works for both LA-
MAPF and kR-MAPF. We chose these two settings as they
are two extreme cases of occupying locations; in LA-MAPF,
multiple locations are occupied each time, and in kR-MAPF
each location is occupied for multiple times (other related
works are described in Section 6). While G-CBS can work
with heterogeneous agents, our experiments demonstrate
that it performs relatively similar to the algorithms designed
for specific types of agents.

2 Definitions and Background

In the Multi-Agent Path Finding problem (MAPF) the in-
put is an undirected graph G = (V,E) and a set of n
agents labeled A = {a1, . . . , an}, where each agent ai ∈ A
has a start location si and a goal location gi (si, gi ∈ V).
A solution to the problem is a plan π consists of paths
π = {π1, . . . , πn}, such that for each agent ai the path πi

contains a sequence of adjacent locations that leads from si
to gi. Let πi(t) be the t-th location in that sequence. Be-
tween each two consecutive locations in πi, the agent can
either move to an adjacent location or wait in its current lo-
cation (∀t : (πi(t), πi(t+ 1)) ∈ E ∨ πi(t) = πi(t+ 1)).

A solution π is called valid if it is conflict-free. Following
the terminology suggested by Stern et al. (2019), we define
the following conflicts. A vertex conflict 〈ai, aj , v, t〉 occurs
when two agents ai and aj are planned to be in the same lo-
cation v at the same time step t, i.e., πi(t) = πj(t) = v.
A swapping conflict 〈ai, aj , e, t〉 occurs when two agents
ai and aj are planned to traverse the same edge e in oppo-
site directions between the same consecutive time steps, i.e.,
πi(t) = πj(t+ 1) ∧ πi(t+ 1) = πj(t) (e = (πi(t), πj(t))).

A solution π is called optimal if it minimizes some objec-
tive function. Let C(πi) be the cost of all move/wait actions
in πi. We focus on minimizing Sum-Of-Costs (SOC), which
is the sum of all paths costs in π, i.e.,

∑
πi∈π C(πi).

The Thirteenth International Symposium
 on Combinatorial Search (SoCS 2020)

101

2.1 Conflict-Based Search (CBS)

CBS (Sharon et al. 2015) is an efficient, popular algo-
rithm for finding optimal MAPF solutions. CBS searches
in two levels. The high-level of CBS builds a binary tree,
called Constraint Tree (CT). Each CT node N contains: (1)
N.constraints, a set of constraints; (2) N.π, a solution; (3)
N.cost, the cost of N.π based on the selected objective func-
tion. A constraint 〈a, v, t〉 forbids agent a from being in lo-
cation v at time step t (the same can be done for an edge).
The low-level of CBS plans a path for one agent from its
start location to its goal location that satisfies a given set of
constraints. Any single-agent path finding algorithm, such as
A*, can be used as the low-level algorithm. Each CT node
calls the low-level for each agent along with its constraints
from N.constraints (if such exist). CBS starts searching from
a CT root node N that contains an empty set of constraints.
Then, it identifies conflicts by scanning all paths in N.π.
This can be done efficiently by using a hash table. A con-
flict 〈ai, aj , v, t〉 is resolved by generating two new CT child
nodes Ni and Nj . CBS imposes a constraint on each of the
conflicting agents, i.e., 〈ai, v, t〉 on Ni and 〈aj , v, t〉 on Nj .
To obtain an optimal solution, CBS searches in a best-first
search manner (lowest cost first). When a conflict-free CT
node N is expanded, N.π is returned as an optimal solution.

2.2 MAPF for Large Agents (LA-MAPF)

LA-MAPF (Li et al. 2019b) is an extension of MAPF for
large agents. In LA-MAPF, each agent ai is represented by
a reference point (location), and has a fixed geometric shape
Pi(v) ⊆ V that is projected from its reference point. Each
agent ai has a start reference point si and a goal reference
point gi. A vertex conflict 〈ai, aj , vi, vj , t〉 between agents
ai and aj occurs when the shapes of ai and aj projected by
reference points vi and vj , respectively, at time step t over-
lap, i.e., (πi(t) = vi) ∧ (πj(t) = vj) ∧ (Pi(vi) ∩ Pj(vj)
=
∅)1. A solution is a conflict-free plan π, leading each agent
from its start reference point to its goal reference point.

To optimally solve LA-MAPF problems, Multi-
Constraint CBS (MC-CBS) was introduced and it works
as follows. For a CT node N , conflicts are identified by
simulating N.π and detecting overlapping shapes. A vertex
conflict is identified when Pi(πi(t)) ∩ Pj(πj(t))
= ∅.
To resolve a conflict in CT node N , MC-CBS generates
two CT child nodes Ni and Nj , each with a multi-
constraint, which is a set of constraints Ci and Cj on
the reference points of the conflicting agents ai and
aj , respectively. For a given conflict 〈ai, aj , vi, vj , t〉,
there are two approaches for determining the above
multi-constraint: (1) The Asymmetric approach adds a sin-
gle constraint to one of the agents Ci = {〈ai, vi, t〉}
and a large set of constraints to the other agent
Cj = {〈aj , v′, t〉 | 〈ai, aj , vi, v′, t〉 is a vertex conflict}. (2)
The Symmetric approach chooses one overlapping location
v ∈ Pi(vi) ∩ Pj(vj), and sets Ci = {〈ai, v′, t〉 |v ∈ Pi(v

′)}
and Cj = {〈aj , v′′, t〉 |v ∈ Pj(v

′′)}.

1Similar definitions exist for swapping conflicts.

2.3 k-Robust MAPF (kR-MAPF)

kR-MAPF (Atzmon et al. 2020b) is a variant of MAPF with
an additional parameter k. In kR-MAPF, each agent can be
delayed up to k times. A solution to kR-MAPF is a plan π
such that there are no k-delay conflicts in π. A k-delay con-
flict 〈ai, aj , v, ti, tj〉 between agents ai and aj occurs when
both agents are planned to be in location v at time steps ti
and tj , where |ti − tj | ≤ k, i.e., πi(ti) = πj(tj) = v.

kR-MAPF was solved by a CBS-based algorithm, called
Improved k-Robust CBS (IkR-CBS). IkR-CBS identifies and
resolves conflicts as follows. For a CT node N , k-delay con-
flicts are identified in N.π when two agents occupy the same
location in time steps ti and tj , receptively, where |ti−tj | ≤
k. To resolve k-delay conflicts, IkR-CBS uses range con-
straints (which are similar to the multi-constraint described
above). While MC-CBS imposed multiple constraints of lo-
cations on a specific time step, IkR-CBS imposes multiple
constraints of time steps (range of time steps) on a specific
location. A range constraint 〈a, v, [t1, t2]〉 prohibits agent a
to be in location v at time range [t1, t2]. For a given con-
flict 〈ai, aj , v, ti, tj〉, there are also two approaches for de-
termining the constraints ranges as follows. (1) The Asym-
metric approach imposes a constraint of a single time step
on one agent 〈ai, v, [ti, ti]〉, and a large range of time steps
on the other agent 〈aj , v, [ti − k, ti + k]〉. Of course, the
range can be divided differently between the agents, in a
more balanced way. (2) The Symmetric approach imposes
the same range of time steps on both agents. Assuming that
ti ≤ tj , the symmetric constraints are 〈ai, v, [tj − k, tj]〉
and 〈aj , v, [tj − k, tj]〉 for agents ai and aj , respectively.
There are other possible symmetric ranges that can be im-
posed, such as 〈ai, v, [ti, ti + k]〉 and 〈aj , v, [ti, ti + k]〉.

3 Generalized MAPF (G-MAPF)
In this section, we introduce G-MAPF, which generalizes
MAPF for heterogeneous agents.
Definition 3.1 (State Si). A state Si ⊂ V is a list of loca-
tions that are occupied by agent ai.
Definition 3.2 (Transition Function Tri). Given a state Si,
the transition function Tri(Si) returns a set of m states
{S1

i , . . . , S
m
i }, each is a state that agent ai reaches by per-

forming one of m applicable actions for ai positioned at Si.
Transition functions can define many types of actions,

such as moving, waiting, rotating, jumping, and changing
the shape of the agent. Moreover, a unique transition func-
tion can be defined for each agent.

The Generalized MAPF (G-MAPF) problem is defined
on an undirected graph G = (V,E) and a set of n agents
labeled A = {a1, . . . , an}. Each agent ai has a start state
Ss
i , a goal state Sg

i , and a transition function Tri. The task
is to find a states plan π̂ which consists of states paths
π̂ = {π̂1, . . . , π̂n}, such that for each agent ai the states path
π̂i contains a sequence of states that leads from Ss

i to Sg
i . Let

π̂i(t) be the t-th state in that sequence. Between each two
consecutive states in π̂i, there must be a transition according
to Tri, namely, π̂i(t+ 1) ∈ Tri(π̂i(t)).

Similarly to classical MAPF, a solution π̂ is valid if it is
conflict-free, namely, agents do not overlap. In G-MAPF, we

102

(a) (b) (c) (d)

Figure 1: (a) LA-MAPF problem. (b) G-CBS’s CT for LA-MAPF. (c) kR-MAPF problem. (d) G-CBS’s CT for kR-MAPF.

define the following conflicts. A Vertex conflict 〈ai, aj , v, t〉
occurs when both agents ai and aj are planned to occupy
v (v is in the overlapping area) at time step t, i.e., v ∈
π̂i(t) ∩ π̂j(t). A Swapping conflict 〈ai, aj , vi, vj , t〉 occurs
when both agents ai and aj are planned to swap locations
vi and vj between the same two consecutive time steps, i.e.,
(vi ∈ π̂i(t) ∩ π̂j(t+ 1)) ∧ (vj ∈ π̂i(t+ 1) ∩ π̂j(t)).

This generalization provides two contributions. First, it
can generalize both LA-MAPF and kR-MAPF, as well as
other types of agents. Second, while both LA-MAPF and
kR-MAPF require a sophisticated method for constraining
the agents to avoid collisions (multi-constraint or range con-
straints), this generalization defines a similar, simpler con-
straining method, as will be presented in Section 4.

3.1 Generalizing LA-MAPF and kR-MAPF

Next, we define LA-MAPF as a special case of G-MAPF.
Recall that Pi(v) denotes the geometric shape of agent ai
projected by reference point v. For each agent ai, its start
and goal states Ss

i and Sg
i can be derived from its start and

goal reference points si and gi as Pi(si) and Pi(gi), respec-
tively. For each two reference points v and v′ such that agent
ai can move from v to v′, the transition function Tri can be
built easily from theirs projections, i.e., S′

i ∈ Tri(Si) where
Si = Pi(v) and S′

i = Pi(v
′).

Generalizing kR-MAPF is less intuitive, as the agents do
not have shapes but rather have a unique behavior. To ad-
just kR-MAPF to G-MAPF, we must define the locations
’occupied’ by agents as projected from their behavior. In
kR-MAPF, a k-delay conflict occurs when two agents are
planned to be in the same location at time steps t1 and t2,
where |t1 − t2| ≤ k. To avoid k-delay conflicts, we can say
that at each time step an agent occupies its current location
as well as its previous k locations (like a tail). Consequen-
tially, each state S is a list of size k + 1 (the current loca-
tion and the previous k locations), where the first location
(S[0]) corresponds to the agent current location, the second
location (S[1]) corresponds to its previous location, and so
on. For each agent ai, its start state is Ss

i = (si, . . . , si)
and its goal state is Sg

i = (gi, . . . , gi) (si and gi appear in
all time steps). The transition function Tri for a state Si =
{v1, . . . , vk+1} of agent ai is defined as follows. For each
edge e = (v1, v

′), where v1 is the current location of the
agent (= Si[0]), we create a new state S′

i = {v′, v1, . . . , vk}

(adding v′ as the current location and removing vk+1 from
the back of the list), S′

i ∈ Tri(Si).

4 Generalized CBS (G-CBS)

Next, we define Generalized CBS (G-CBS), a CBS-based
solver for G-MAPF. We start by defining the constraint used
by G-CBS, called occupation constraint.

Definition 4.1 (Occupation Constraint). An occupation
constraint 〈ai, v, t〉 prohibits any location in the state of
agent ai to occupy location v at time step t, i.e., v /∈ π̂i(t).

As in CBS, G-CBS works in two levels. The low-level
of G-CBS gets an agent start state, goal state, its transition
function, and a set of occupation constraints, and returns a
states path for this agent. Here also, any single-agent solver
can be used as the low-level solver. The low-level solver will
only generate states that satisfy all occupation constraints
and it must use the corresponding transition function to gen-
erate successive states. The high-level of G-CBS searches
the CT, where each CT node N contains a states plan N.π̂.
G-CBS runs a best-first search over the CT, and it identifies
and resolves conflicts as follows.
Identifying conflicts. For each CT node N , G-CBS sim-
ulates N.π̂ and detects locations that are occupied by two
agents ai and aj at the same time t, i.e., π̂i(t) ∩ π̂j(t)
= ∅.
Resolving conflicts. After detecting conflicts in CT node N ,
G-CBS chooses one of the conflicts to resolve. For a cho-
sen conflict 〈ai, aj , v, t〉, two new CT child nodes Ni and
Nj are generated, with the additional occupation constraints
〈ai, v, t〉 and 〈aj , v, t〉, respectively. Swapping conflicts are
resolved in a similar way.
Example of LA-MAPF as G-MAPF. Figure 1(a) shows an
example of a LA-MAPF problem with two agents a1 and
a2, each with a size of 2x2. Their start states are Ss

1 =
(A,B,E, F) and Ss

2 = (I, J,M,N) (reference points A
and I), and their goal states are Sg

1 = (Q,R, S, T) and
Sg
2 = (C,D,G,H) (reference points Q and C). Figure 1(b)

presents the corresponding CT generated by G-CBS. First,
the root calculates a states path for each agent separately.
Then, it identifies conflicts. Here, one conflict is identified
– 〈a1, a2, J, 1〉; both agents occupy J at time step 1. The
conflict is resolved by imposing an occupation constraint on
each of the agents, and generating two corresponding CT
child nodes. The minimal cost node is now selected next

103

30x30 den502d
n Rate #Exp Time n Rate #Exp Time

MC-CBS 2 99% 289 3,204 5 86% 6 8,189
G-CBS 97% 269 1,913 94% 7 4,498

MC-CBS 4 77% 1,155 5,188 10 51% 23 19,994
G-CBS 74% 1,207 4,626 70% 23 9,711

MC-CBS 6 40% 2,221 8,974 15 25% 39 28,437
G-CBS 37% 2,200 9,780 36% 38 15,679

Table 1: LA-MAPF experiment.

30x30 den502d
n Rate #Exp Time n Rate #Exp Time

IkR-CBS 5 100% 11 15 5 94% 1 1,021
G-CBS 100% 10 523 91% 1 2,541

IkR-CBS 10 96% 119 1,277 10 81% 31 3,331
G-CBS 93% 163 1,571 74% 37 5,783

IkR-CBS 15 89% 201 2,223 15 73% 50 19,287
G-CBS 87% 216 3,540 51% 52 28,285

Table 2: kR-MAPF experiment.

(the left child), and a valid solution with a cost of 9 is re-
turned. Now, consider MC-CBS. MC-CBS with symmet-
ric constraints would build the exact same CT. The occupa-
tion constraint imposed by G-CBS on location J is identical
to the vertex constraint imposes by MC-CBS on reference
points E,F, I, and J . 2

Example of kR-MAPF as G-CBS. A kR-MAPF problem
(k = 1) with two agents a1 and a2 is presented in Fig-
ure 1(c). Their start and goal states are Ss

1 = (A,A),
Sg
1 = (F, F), and Ss

2 = (C,C), Sg
2 = (E,E) (s1 = A,

g1 = F , s2 = C, and g2 = E). Figure 1(d) shows the CT
created by G-CBS. In the CT, the root node identifies a con-
flict in location D at time step 2. To resolve the conflict, the
occupation constraints 〈a1, D, 2〉 and 〈a2, D, 2〉 are imposed
on the agents. Next, the minimal cost CT node is expanded
(the left child). No conflicts are identified and a solution with
a cost of 8 is returned. Now, consider IkR-CBS for solving
the same problem. IkR-CBS with symmetric constraints will
impose the constraints 〈a1, D, [1− 2]〉 and 〈a2, D, [1− 2]〉
on the reference point. This is identical to the imposed oc-
cupation constraint 〈a1, D, 2〉 done by G-CBS.2

Theorem 4.1. G-CBS is sound, complete, and optimal.

Proof outline. G-CBS determines that a CT node is a CT
goal node only if it has no conflicts. Thus, the returned so-
lution is a valid G-MAPF solution. As agents cannot oc-
cupy the same location at the same time step, by generat-
ing two CT child nodes N1 and N2 for CT node N , each
valid solution that satisfies N.constraints also satisfies ei-
ther N1.constraints or N2.constraints. Therefore, by per-
forming a best-first search over the CT, G-CBS is guaranteed
to return an optimal solution. �

5 Experimental Results

To evaluate G-CBS, we compared it to both MC-CBS and
IkR-CBS with symmetric constraints, over 30x30 grids with

2Occupation constraints can be adjusted to be identical to asym-
metric constraints. However, it will need to consider the specific
shape of the agent. Thus, G-CBS does not directly support it.

10% obstacles and over the den502d map from the movingai
repository (Sturtevant 2012). In each experiment we created
70 instances with n randomly allocated agents and measured
the average success rate (1min timeout; denoted by Rate),
high-level expansions (denoted by #Exp), and time (in ms).
The expansions and time were averaged over all instances
that were solved by both solvers.

Table 1 shows the results for the comparison between
MC-CBS and G-CBS. In this experiment we randomly al-
located agents (n), each with a square of size of 3x3. As can
be seen, the results are relatively similar for both G-CBS and
MC-CBS, with a clear advantage for G-CBS in the den502d
map. This advantage is a result of the compact constraining
method used by G-CBS. However, this is probably a matter
of the implementation of MC-CBS.

The comparison between IkR-CBS and G-CBS is pre-
sented in Table 2. Here, each randomly allocated agent has a
robustness of k = 2. We can see that IkR-CBS was a slightly
faster than G-CBS, with a better success rate, and with al-
most the same number of expansions, on both 30x30 grids
and on the den502d map. This is a result of the runtime of
the low-level. While IkR-CBS identifies low-level nodes as
similar based on a single location, G-CBS identifies similar
nodes based on their entire occupation to allow for general
occupation constraints, and hence consumes more time.

6 Related Work

Sharon et al. (2012) solved MAPF using CBS with Meta-
agents. Agents that conflicted more than B times during the
search were merged and solved together as one meta-agent.
G-CBS can define a meta-agent as one agent that occupies
the multiple locations occupied by the meta-agent.

Agents can also be defined in MAPF as train-agents (Atz-
mon, Diei, and Rave 2019), i.e., agents that occupy a se-
quence of locations. G-CBS can also define agents as trains
by setting their states as the occupied sequence of locations.

MAPF was also extended for a set of convoys (Thomas,
Deodhare, and Murty 2015). Each convoy was defined by
a set of edges. Thus, two agents can cross the same loca-
tion without causing a collision. Adjusting G-CBS for such
convoys require defining the states and constraints on edges,
instead of locations, and hence left for future work.

7 Conclusions

In this paper we generalized MAPF for heterogeneous
agents (G-MAPF). We showed how both LA-MAPF and
kR-MAPF are special cases of G-MAPF. For solving G-
MAPF, we introduced G-CBS, and showed experimentally
that although G-MAPF is flexible, G-CBS performs rela-
tively close to MC-CBS and IkR-CBS, which are hand tai-
lored for one type of agent. Future work can suggest poli-
cies for selecting conflicts to resolve (Boyarski et al. 2015)
and can adjust G-CBS for the case of probabilistic environ-
ments (Wagner and Choset 2017; Atzmon et al. 2020a).

8 Acknowledgements

This research was supported by the Israel Science Founda-
tion (ISF) under grant number 844/17 and by the United

104

States-Israel Binational Science Foundation (BSF) under
grant number 2017692.

References

Atzmon, D.; Stern, R.; Felner, A.; Sturtevant, N. R.; and
Koenig, S. 2020a. Probabilistic robust multi-agent path find-
ing. In the International Conference on Automated Planning
and Scheduling (ICAPS).
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N. 2020b. Robust multi-agent path finding
and executing. Journal of Artificial Intelligence Research
67:549–579.
Atzmon, D.; Diei, A.; and Rave, D. 2019. Multi-train path
finding. In the International Symposium on Combinatorial
Search (SoCS), 125–129.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015. ICBS: improved
conflict-based search algorithm for multi-agent pathfinding.
In the International Joint Conference on Artificial Intelli-
gence (IJCAI), 740–746.
Felner, A.; Stern, R.; Shimony, S. E.; Boyarski, E.; Gold-
enberg, M.; Sharon, G.; Sturtevant, N. R.; Wagner, G.; and
Surynek, P. 2017. Search-based optimal solvers for the
multi-agent pathfinding problem: Summary and challenges.
In the International Symposium on Combinatorial Search
(SoCS), 29–37.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
T. K. S.; and Koenig, S. 2018. Adding heuristics to conflict-
based search for multi-agent path finding. In the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 83–87.
Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
implicit conflict-based search using lazy clause generation.
In the International Conference on Automated Planning and
Scheduling (ICAPS), 155–162.
Lam, E.; Bodic, P. L.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-cut-and-price for multi-agent pathfinding. In
the International Joint Conference on Artificial Intelligence
(IJCAI), 1289–1296.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S.
2019a. Disjoint splitting for multi-agent path finding with
conflict-based search. In the International Conference on
Automated Planning and Scheduling (ICAPS), 279–283.
Li, J.; Surynek, P.; Felner, A.; Ma, H.; Kumar, T. K. S.; and
Koenig, S. 2019b. Multi-agent path finding for large agents.
In the AAAI Conference on Artificial Intelligence (AAAI),
7627–7634.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2012.
Meta-agent conflict-based search for optimal multi-agent
path finding. In the International Symposium on Combina-
torial Search (SoCS).
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artif. Intell. 219:40–66.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;

Barták, R.; and Boyarski, E. 2019. Multi-agent pathfinding:
Definitions, variants, and benchmarks. In the International
Symposium on Combinatorial Search (SoCS), 151–159.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Computational Intelligence and AI in Games 4(2):144–
148.
Surynek, P. 2010. An optimization variant of multi-robot
path planning is intractable. In the AAAI Conference on Ar-
tificial Intelligence (AAAI), 1261–1263.
Surynek, P. 2012. Towards optimal cooperative path plan-
ning in hard setups through satisfiability solving. In the Pa-
cific Rim International Conference on Artificial Intelligence
(PRICAI), 564–576.
Thomas, S.; Deodhare, D.; and Murty, M. N. 2015. Ex-
tended conflict-based search for the convoy movement prob-
lem. IEEE Intelligent Systems 30:60–70.
Wagner, G., and Choset, H. 2017. Path planning for multiple
agents under uncertainty. In the International Conference on
Automated Planning and Scheduling (ICAPS), 577–585.
Yu, J., and LaValle, S. M. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In the AAAI
Conference on Artificial Intelligence (AAAI), 1444–149.

105

