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Abstract

fMM and GBFHS are two prominent parametric bidirectional
heuristic search algorithms. A great deal of theoretical and
empirical work has been done on both of these algorithms
over the past few years. A number of interesting theoretical
properties were proved for only one of these algorithms. In
this paper we analyze the differences and similarities between
these algorithms by comparing their minimal number of node
expansions, and their implementations. Importantly, we in-
troduce a version of fMM, called dfMM, that uses a dynamic
fraction, and show that when both algorithms are enriched by
lower-bound propagation they become equivalent. In partic-
ular, for every parameter value of dfMMlb we provide a pa-
rameter value of GBFHSlb such that both algorithms expand
the same sequence of nodes, and vice versa. This equivalence
indicates that all theoretical properties proved for one algo-
rithm hold for both. Therefore, it suffice to consider only one
of these algorithms for future analyses and benchmarks.

1 Introduction

Over the past few years, bidirectional heuristic search
(Bi-HS) has been the focus of an active research that yielded
new algorithms and many theoretical and empirical results.
Notable examples for such algorithms are fMM (Shaham
et al. 2017) and GBFHS (Barley et al. 2018), two para-
metric Bi-HS algorithms. On the surface, these algorithms
seem very different, but this paper shows their similarities:
they both have the ability to set the meeting point between
the two frontiers using a user-supplied parameter. To pos-
sess this ability, fMM prioritizes nodes by dividing their g-
values by a parameterized fraction, while GBFHS splits the
current solution bound using a parameterized split function
that limits which nodes are expanded from each side. In this
paper we discuss the differences and similarities of the al-
gorithms in terms of minimal node expansions. In addition,
we show that both GBFHS and fMM can be enriched by
the lower-bound propagation (lb-propagation) (Shperberg et
al. 2019b), creating fMMlb and GBFHSlb respectively. We
show that adding lb-propagation to both algorithms never
harm their performance (in terms of minimal node expan-
sions required to solve and verify optimal solutions) and the
performance even improves for many problem instances.
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Moreover, we define a variant of fMM, called dfMM, that
uses a dynamic fraction (that changes during the search) in-
stead of fixed fraction. dfMMcan also be enriched by the lb-
propagation to create dfMMlb. Next, we show that dfMMlb

and GBFHSlb are equivalent. This means that every frac-
tion used by dfMMlb can be mapped to a split function of
GBFHSlb, and vice versa, such that both algorithms expand
the same sequence of nodes (i.e. the same set of nodes in
the same order). dfMMlb and GBFHSlb retain the theoreti-
cal properties of both original algorithms, with the addition
of other desirable properties induced by the lb-propagation.
Thus, it suffice to consider only one of these algorithms for
future analyses and benchmarks.

Finally, we examine implementations of all algorithms
(fMM, dfMM, fMMlb, dfMMlb, GBFHS, and GBFHSlb)
and compare their complexity. We show that fMM with
a fixed fraction imposes the least amount of overhead per
node expansion, while all the rest algorithms require similar
amount of overhead.

2 Definitions and Background

Our aim is to find the the least-cost path between start
and goal in a given implicit graph G. Let d(x, y) de-
note the shortest distance between x and y and let C∗ =
d(start, goal). In some cases, the cost of the cheapest edge
of the graph (denoted by ε) is available. Otherwise ε is as-
sumed to be 0.

Bi-HS typically keeps two open lists, OpenF for the for-
ward search (F), and OpenB for the backward search (B).
Both fMM and GBFHS use front-to-end heuristics (Kaindl
and Kainz 1997) which estimate the distance between any
state and the start or goal. Front-to-front heuristics (de
Champeaux and Sint 1977) estimate the distance between
any two nodes in the search space and are beyond our scope.

Given a direction D (either F or B), we use fD, gD and hD

to indicate f -, g-, and h-values in direction D. In addition,
fminD and gminD represent the minimal f - and g-values
in that direction. We use D to denote the direction opposite
to D, and define fD, gD and hD symmetrically.

The forward heuristic hF is admissible if and only if
hF (u) ≤ d(u, goal) for every state u ∈ G and is con-
sistent if and only if hF (u) ≤ d(u, u′) + hF (u

′) for all
u, u′ ∈ G. Properties of the backward heuristic hB are de-
fined analogously. Let IAD be the set of problems with ad-
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missible heuristics, and ICON ⊆ IAD be the set of problems
with consistent heuristics. A search algorithm is admissible
on a set of problem instances I if it is guaranteed to find an
optimal solution on every problem instance i ∈ I .

2.1 Guaranteeing Solution Optimality

Dechter and Pearl (1985) showed that any unidirectional
search algorithm1 that is admissible on IAD, must expand
all nodes n with f(n) < C∗ in order to guarantee optimality
of solutions, when given a problem instance from ICON.

Eckerle et al. (2017) generalized this to Bi-HS by ex-
amining pairs of nodes 〈u, v〉 such that u ∈ OpenF and
v ∈ OpenB . If u and v meet all the following conditions:2

1. fF (u) < C∗
2. fB(v) < C∗
3. gF (u) + gB(v) + ε < C∗

then every any Bi-HS algorithm1 that is admissible on IAD
must expand at least one of u or v to ensure that there is
no path from start to goal passing through u and v of cost
< C∗, when given a problem instance from ICON. Such a
pair of nodes is called a must-expand pair (MEP). These con-
ditions can be formalized into a pairwise lower-bound:

Definition 1. For each pair of nodes (u, v) let
lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v) + ε}

As a result 〈u, v〉 is a must-expand pair if lb(u, v) < C∗.
A* expands all the nodes with fF < C∗, which is equiv-

alent to expanding the forward node of every MEP. Bi-HS
algorithms may expand nodes from both sides, potentially
covering all the MEPs with fewer expansions.

Shperberg et al. (2019b) extended the lb notation and de-
fined a lower-bound for nodes instead of pairs. In order to
define a lower-bound to a node u, the bound lb(u, v) is ap-
plied to every node v on the opposite frontier of u, and only
the minimum among these values is considered. Formally,

lb(u) = min
v∈openD

lb(u, v)

lb(u) is a lower-bound on the cost of any solution that
passes through u for every node u in OpenD.

We note that different settings, in which algorithms that
are admissible on ICON but not on IAD, have been explored
(Shaham et al. 2018; Alcazar, Riddle, and Barley 2020). In
these settings, the conditions of Eckerle et al. (2017) are too
strict, i.e., not every MEP (as defined above) needs to be cov-
ered, and a different set of conditions is required to define
MEPs and bound the minimal number of node expansions
for these cases. In this paper we consider GBFHS and fMM,
which are both admissible on IAD. Thus, these other settings
are beyond the scope of this paper.

2.2 Well-Behavedness and Reasonableness

Shperberg et al. (2019b) defined two desirable properties
for Bi-HS algorithms the well-behavedness property and the

1Only DXBB algorithms (Eckerle et al. 2017) are considered
here. These are deterministic algorithms that are expansion-based
(have only black-box access to the graph G via expansion methods)

2The ε term was added later by Shaham et al. (2018) as a gen-
eralization of the inequalities.

reasonableness property. Let Ah(I, t) be the sequence of
nodes expanded by running algorithm A using heuristic h
on problem instance I with a tie-breaking function t, and let
S(Ah(I, t)) be a (unordered) set of nodes induced by the
expansion performed by Ah(I, t).

Definition 2. Let h1, h2 be admissible, consistent heuris-
tics, such that h1 dominates h2. Algorithm A is said to be
well-behaved if for every tie-breaking policy t and prob-
lem instance I , there exists a tie-breaking policy t′ such that
S(Ah1

(I, t′)) ⊆ S(Ah2
(I, t)).

Definition 3. A Bi-HS algorithm is reasonable if for every
tie-breaking policy it does not expand a node v if either
lb(v) > C∗, or if lb(v) = C∗ and a solution of cost C∗
was found.

In some sense, the well-behavedness property ensures that
improving the heuristic function never harms the algorithms
performance (up to a tie-breaking). By contrast, the rea-
sonableness property ensures that algorithms do not expand
nodes whose lower-bound cannot lead to optimal solutions.

2.3 Fractional MM

MM is a Bi-HS algorithm, which is admissible on IAD, that
meets in the middle (Holte et al. 2017). I.e. it is guaranteed to
never expand a node whose g-value exceeds C∗

/2. Fractional
MM (fMM(p)) is a generalization of MM that never expands
nodes in the forward direction whose g-value exceeds p ·C∗,
and never expands nodes in the forward direction whose g-
value exceeds (1 − p) · C∗. For a given fraction 0 < p <
1, fMM(p) chooses a node for expansion according to the
following priority functions: 3

prF (u) = max{gF (u) + hF (u),
gF (u)

p + ε}
prB(v) = max{gB(v) + hF (v),

gB(v)
1−p + ε}

The node with a lowest priority is chosen for expansion
regardless of whether it is in the forward or backward side
(ties can be broken in many ways). Note that MM is a special
case of fMM(p) with p = 1/2.

The priority of a node n in direction D can be written as:

prD(n) = max{fD(n),
gD(n)

qD
+ ε}

where qF = p and qB = (1− p).
fMM terminates when one of these conditions holds:

(1) One of OpenF or OpenB is empty.
(2) There exists a node v in both open lists with C =
gF (v) + gB(v) such that either:

(i) fminF ≥ C;
(ii) fminB ≥ C;
(iii) gminF + gminB + ε ≥ C; or
(iv) min

u∈OpenD

prD(u) ≥ C.

3Strictly speaking for p = 1 or p = 0 fMM should run forward-
or backward A*. Additionally, the original definition of fMM and
MM did not include ε, which was introduced in later versions of the
algorithms: MMε and fMMε.
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Shaham et al. (2017) showed that for every problem in-
stance, there exists a fraction p∗ such that fMM(p∗) is opti-
mally efficient and will expand the minimal number of nodes
required to guarantee the optimality of its solution, with re-
spect to the setting described in Section 2.1. However, p∗ is
not known a priori since it depends on search tree structure
and the value of C∗. Finally, fMM was shown to be neither
reasonable nor well-behaved (Shperberg et al. 2019b).

Example 1. Consider the problem instance that previously
appeared in (Holte et al. 2017; Shperberg et al. 2019b) and
is depicted in Figure 1. In this problem instance ε = 1, and
the values inside nodes are h-values in the direction indi-
cated by the arrow. fMM that meets in the middle (with
p = 1/2) starts by expanding start and goal (priority of 2
due to their f -value), after which nodes A, C, S1 and G1

are generated. Since the f -value of all these nodes is greater
than or equal to twice their g-values + ε, their priority is de-
termined by their f -value. Therefore, S1 and G1 have a pri-
ority of 3, while A and C have a priority of 4. Thus, for any
tie-breaking, fMM must expand S1 and G1 before expand-
ing A and C which are required in order to find a solution
and terminate.

2.4 GBFHS

GBFHS (general breadth-first heuristic search) (Barley et
al. 2018) is a prominent bidirectional heuristic search algo-
rithm that iteratively increases the depth of the search. For
each depth, denoted by fLim , GBFHS uses a pre-defined
split function (a ”parameter” of the algorithm) that deter-
mines how deep to search on each side. The split func-
tion splits fLim to gLimF and gLimB , such that fLim =
gLimF+gLimB+ε−1 (in unit edge cost domains ε−1 = 0).
For a given iteration (i.e., a given value of fLim) all nodes
with fD(n) ≤ fLim and gD(n) < gLimD are called ex-
pandable. GBFHS expands all expandable nodes from both
directions. GBFHS terminates as soon as a solution with
cost = fLim is found. Specifically, GBFHS stops when
there exists a node n in both open lists with gF (n)+gB(n) ≤
fLim . If a solution is not found after expanding all ex-
pandable nodes, fLim is incremented (adds 1), and as a re-
sult the split function updates gLimF or gLimB (such that
fLim = gLimF + gLimB + ε − 1). Then, a new iteration
begins. The split function must update the g-limits (gLimF

and gLimB ) in a consistent way, i.e., the values it returns
must be larger than or equal to the previous values. This
means that when fLim is incremented then one of gLimF

and gLimB is incremented too.
GBFHS was shown to have some desirable properties

when given a problem instance from IAD: (1) it returns an
optimal solution when the edges are non-negative integers;
(2) in unit cost domains, the first solution GBFHS finds is
guaranteed to be optimal; (3) Its frontiers can be made to
meet anywhere using a proper split function; and (4) it is
both well-behaved and reasonable.

Since GBFHS is guaranteed to return an optimal solution
only when the edge costs are (non-negative) integers, we will
assume such edge costs for the sake of the analysis. Never-
theless, we conjecture that GBFHS can be slightly modified

in a way that would guarantee optimal solutions for any non-
negative edge costs, while retaining all of its original prop-
erties. Investigating this conjecture is left for future work.
Example 2. Consider Figure 1 again. GBFHS that meets in
the middle will then split fLim to gLimF = gLimB = 1.
Thus, GBFHS expands every node with fD ≤ 2 and gD < 1.
Only start and goal meet these conditions and they are
expanded and as a result, A,C, S1 and G1 are generated.
Since there are no expandable nodes left, fLim is increased
to 3, and the new split function is either (gLimF = 2 and
gLimB = 1) or (gLimB = 1 and gLimF = 2). Since
the problem graph is symmetric, without loss of general-
ity we assume that GBFHS chooses the split gLimF = 2
and gLimB = 1 . Thus, only the S1 nodes are expanded,
and then fLim is increased to 4. Now, gLimF = 2 and
gLimB = 2, and the set of expandable nodes is {A,C,G1}.
Therefore, GBFHS can expand A and C, and terminate
without having to expand G1.

2.5 The lb-propagation

Shperberg et al. (2019b) proposed a way for enhancing
heuristics by propagating lower-bounds (lb-propagation) be-
tween frontiers. The lb-propagation is based on the must-
expand theory of Eckerle et al. (2017) (Section 2.1), by
bounding the minimal solution cost that can pass through
each node u in the open lists.

Given a heuristic function hD, for nodes in direction D,
they defined hDlb

(n) = lb(n)−gD(n) to be the new heuris-
tic value results by the lb-propagation. Since lb(n) ≥ fD(n),
hDlb

(n) ≥ hD(n) for every node. Thus this new heuris-
tic is at least as strong as the original heuristic. In addition,
the f -value of a node n using hDlb

, denoted by fDlb
(n)

(= gD(n) + hDlb(n)), equals lb(n).
The priority function of fMMlb is:

prD(n) = max{fDlb
(n),

gD(n)

qD
+ ε}

In addition, since lb-propagation already incorporates the
information of f - and g- values from nodes in the other di-
rection into the priority function, the first three inequalities
in the stopping criteria above in Section 2.3 become redun-
dant. Thus, fMMlb halts when

min
u∈OpenD

prD(u) ≥ C

This lb-propagation can bestow some desirable prop-
erties (e.g. being reasonable and well-behaved) on some
existing algorithms. In particular, adding lb-propagation
makes fMMlb reasonable and well-behaved (Shperberg et al.
2019b). GBFHS is already reasonable and well-behaved in
its original form. However, the lb-propagation may also be
applied to GBFHS in a manner that further improves its per-
formance, an issue we further examine below.

3 Dynamic Fractional MM

Recall that GBFHS is defined using a split function which
returns a new gLimF and gLimB values every time fLim is
increased. By contrast, fMM is defined with a fixed fraction
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p. We now introduce dfMM, a variant of fMM that uses a
dynamic fraction.

dfMM uses the same priority function and termination
conditions of fMM. However, the fraction p is updated ev-
ery time that the minimal pr (among both sides) is changed.
We restrict the fraction updates to be consistent with nodes
that have already been expanded, i.e. the priority of nodes
that have already been expanded must be less than or equal
to the new minimal priority in the open list. This resembles
the restriction of the split function of GBFHS, in which the
gLimD values it returns must be larger than or equal to the
old gLimD values. Formally, let p and pr be the fraction and
minimal priority (respectively) before the update, and let p′
and pr′ be the fraction and minimal priority after the up-
date. Since pr was the minimal priority before the fraction
update, every node n with fD(n) ≤ pr and gD(n)

qD
+ ε ≤ pr

has been expanded. We need to make sure that these nodes
must have been also expanded using the new fraction, hence,
gD(n)
q′D

+ ε ≤ pr′ (where q′F = p and q′B = (1− p)). There-
fore, we need to make sure that qD ·(pr−ε) ≤ q′D ·(pr′−ε).
This gives us the following two inequalities:

p · (pr − ε) ≤ p′ · (pr′ − ε)

and
(1− p) · (pr − ε) ≤ (1− p′) · (pr′ − ε)

which together bound p′ as follows:

p · (pr − ε)

(pr′ − ε)
≤ p′ ≤ 1− (1− p) · (pr − ε)

(pr′ − ε)

By always keeping track of the current and previous mini-
mal priorities in the open lists, as well as the previous frac-
tion, validation of the constraints on p′ can be done very ef-
ficiently. However, using a new fraction has implementation
repercussions, as the open list might need to be reordered
every time the fraction changes. This is further discussed in
Section 6. Nevertheless, nodes are always expanded accord-
ing to the most recent priority function.
Example 3. In Figure 1, Similar to fMM, dfMM with p =
1/2 starts by expanding start and goal (priority of 2 due
to their f -value), after which nodes A, C, S1 and G1 are
generated. Now, the minimal priority of nodes in OPEN has
been increased and is equal to 3 (as shown in Example 1).
Therefore, the fraction can be updated. For example, p = 2/3
can be chosen as the new fraction, as it meet the consistency
constraint. With this fraction, as with p = 1/2, S1 and G1

have a priority of 3, while A and C have a priority of 4. Thus,
S1 and G1 must be expanded before the minimal priority
is updated. Finally, p can be updated and afterwards A and
C can be expanded (depending on the new fraction) before
dfMM terminates.

Clearly, every fixed fraction can be represented by a dy-
namic fraction (by maintaining the same fraction through-
out the search). Moreover, for every dfMM with dynamic
fraction there exists an equivalent fMM with fixed fraction,
using the value of the dynamic fraction at the end of the
search, as a fixed value. Therefore, the theoretical proper-
ties of fMM still apply for dfMM. Despite having the same
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Figure 1: Example where MNEGBFHS(I) < MNEfMM(I)

theoretical properties, dynamic fractions allow the usage of
information which is only available during the search to de-
cide which nodes are expanded.

dfMM can also be enriched by the lb-propagation, result-
ing in dfMMlb. Similarly to fMM and dfMM every fixed
fraction of fMMlb can be represented by a dynamic frac-
tion of dfMMlb. By contrast, here it is unclear if for every
dfMMlb there exists an equivalent fMMlb. While we conjec-
ture that there exists such an equivalence, this claim is much
more challenging to prove (or disprove), since the heuris-
tic values depend on the history of node expansions when
using the lb-propagation. However, the theoretical proper-
ties of fMMlb still apply for dfMMlb. Due to the fraction
consistency constraints, dfMM and dfMMlb never expand
nodes whose g-value exceed qD · C∗, where qD is the pre-
vious fraction. Thus, both dfMM and dfMMlb are still opti-
mally efficient (with respect to the assumptions mentioned
in Section 2.1). In addition, dfMMlb maintains the well-
behavdness and reasonableness properties, as Shperberg et
al. (2019b) original proofs for fMMlb are not affected by the
fact that the fraction is now dynamic.

4 Minimal Expansions of GBFHS and fMM

In order to compare the variants of fMM, and GBFHS, we
would like to reason about the number of nodes expanded by
each of them regardless of which tie-breaking policy is used.
Therefore, we use MNEA(I) to denote the Minimal Number
of Expansions required by algorithm A to find an optimal
solution and guarantee its optimality when running on in-
stance I . Formally, MNEA(I) is the number of expansions
achieved by running A using the best possible tie-breaking,
which is not known a priori. 4

Both fMM and GBFHS are parametric algorithms. For
simplicity, we will consider fMM and GBFHS that aim at
meeting in the middle. However, the analysis below can be
easily modified to any meeting point. We begin by consider-
ing the basic variants, namely, GBFHS and fMM.

Theorem 1. There exists a problem instance I for which
MNEGBFHS(I) < MNEfMM(I)

Proof. Recall the execution of fMM and GBFHS on the
problem instance I in Figure 1, described in Example 1 and

4A somewhat less formal definition of this notion appeared in
Barley et al. (2018) under the name lower-bound.
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Example 2 respectively. fMM has to expand start, goal,
2 · S1, 2 · G1, A and C before been able to terminate, thus,
MNEfMM(I) = 8. By contrast, GBFHS does not need to ex-
pand both S1 and G1 before finding a solution. Therefore,
MNEGBFHS(I) = 6 (start, goal, 2·(S1 or G1), A and C).
Note that the number of nodes in G1 and S1 can be arbitrar-
ily large. Therefore, the difference between MNEGBFHS(I)
and MNEfMM(I) cannot be bounded by any constant.

Theorem 2. For every problem instance I , MNEGBFHS(I) ≤
MNEfMM(I)

Proof. Assume in contradiction that there exists a problem
instance I for which MNEGBFHS(I) > MNEfMM(I), and
let n be the first node in direction D that is expanded by
GBFHS and not by fMM given the same tie breaking pol-
icy for both algorithms. Since n is expanded by GBFHS, we
know that fD(n) ≤ fLim , in addition, gD(n) < gLimD .
We consider GBFHS that meets in the middle. Therefore,
gLimD ≤

⌈
fLim−ε+1

2

⌉
.

Case 1:
fLim−ε+1

2 is integer. In this case, gD(n) <
fLim−ε+1

2 . Since we assume integer costs, gD(n) ≤
fLim−ε+1

2 − 1. By multiplying both sides by 2 and mov-
ing ε to the left hand side in the last inequality, we get that
gD(n)

1/2 + ε ≤ fLim + 1− 2 = fLim − 1.

Case 2:
fLim−ε+1

2 is not integer. = In this case, gD(n) <
fLim−ε+1

2 + 1/2. Using the integer costs assumption,

gD(n) ≤ fLim−ε+1
2 − 1/2. Thus, gD(n)

1/2 + ε ≤ fLim −
ε+ 1− 1 + ε = fLim .

In both cases prD(n) =
gD(n)

1/2 + ε ≤ fLim . We as-
sumed that fMM found a solution without expanding n,
thus, it found a solution via a different node n′, such that
prD(n′) ≤ prD(n) ≤ fLim . Since fMM chose n′ instead of
n, we know that fD(n′) ≤ fLim and gD(n′)

1/2 + ε ≤ fLim ,

and therefore, gD(n′) ≤ fLim−ε
2 < gLimD . Thus, both

n′ and n are expandable by GBFHS, and since fMM and
GBFHS use the same tie-breaking policy, GBFHS had to
expand n′ and not n.

It follows from the previous two theorems that GBFHS
dominates fMM with respect to the MNE measure. In
essence, for every problem instance the MNE value of
GBFHS is bounded by the MNE value of fMM, and there
exist cases in which the MNE value of GBFHS is strictly

smaller. We will now prove that the dynamic version fMM
enriched by lb-propagation (dfMMlb) dominates GBFHS.

We begin by showing that there exist cases in which the
MNE value of fMMlb (with static fraction) is strictly smaller
than the MNE value of GBFHS.

Theorem 3. There exists a problem instance I for which
MNEfMMlb

(I) < MNEGBFHS(I)

Proof. Consider the execution of GBFHS that meets in the
middle on the problem instance I in Figure 2, in which
ε = 0 and the values inside nodes are h-values in the direc-
tion indicated by the arrow. At the beginning of the search,
fLim = 2, the f -value of start and goal. A GBFHS that
meets in the middle will then split fLim + 1 − ε to ei-
ther (gLimF = 2 and gLimB = 1) or (gLimB = 1 and
gLimF = 2). Since the problem graph is symmetric, we
can assume that GBFHS chose the split gLimF = 2 and
gLimB = 1 without loss of generality. Thus, GBFHS ex-
pands every node with fF ≤ 2 and gF < 2, and every node
with fB ≤ 2 and gB < 1. The only nodes that meet these
conditions are start and goal, they are expanded and as a
result A,B,C and D are generated. Since all expandable
nodes have been expanded, fLim is increased to 3, and the
new split function is gLimF = 2 and gLimB = 2. Now, ev-
ery node with fD ≤ 3 and gD < 2 is expandable. Therefore,
GBFHS expands C and D before increasing fLim and be-
fore expanding A or B in order to find a guaranteed optimal
solution and terminate. Thus, MNEGBFHS(I) = 5 (start,
goal, C, D, and (A or B)).

In contrast, fMMlb (with fraction p = 1/2) starts by ex-
panding either start or goal (priority of 2). Without loss of
generality, fMMlb expands start, after which fBlb(goal) =
min{lb(C, goal) = 3. Thus, goal and C have a prior-
ity of 3, while the priority of A is equal to 4. fMMlb can
then choose to expand goal; afterwards, since lb(C) =
lb(C,D) = 3, fMMlb can then expand C. After expanding
C, lb(A,D) = lb(A,B) = 4, thus, the priority of all nodes
in OPEN is 4, and fMMlb can choose to expand A in order
to find a guaranteed optimal solution and terminate. Hence,
MNEfMMlb

(I) = 4 (start, goal, C, and (A or B)). Note that
there can be many nodes similar to D, therefore, the differ-
ence between MNEfMMlb

(I) and MNEGBFHS(I) also cannot
be bounded by any constant.

Since every fixed fraction can be represented by a dy-
namic fraction, MNEdfMMlb

(I) < MNEGBFHS(I) for the
same problem instance in the proof of Theorem 3.

Note that since the heuristic modified by the lb-
propagation is at least as strong as the original heuris-
tic, fDlb

(n) ≥ fD(n) for every node n. In addition,
GBFHS is well-behaved, and therefore using a better heuris-
tic never harm it’s performance. Thus, MNEGBFHSlb

(I) ≤
MNEGBFHS(I). Following the last inequality, along with
the fact that MNEdfMMlb

(I) = MNEGBFHSlb
(I) (as we

prove in the next section), shows that MNEdfMMlb
(I) ≤

MNEGBFHS(I). Since there exists a problem instance I
for which MNEdfMMlb

(I) < MNEGBFHS(I) (Theorem 3)
and MNEdfMMlb

(I) ≤ MNEGBFHS(I), dfMMlb dominates
GBFHS with respect to the MNE measure. Consequently,
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Figure 3: MNE hierarchy for all variants

since MNEdfMMlb
(I) = MNEGBFHSlb

(I), GBFHSlb also
dominates GBFHS. Figure 3 summarize the MNE hierarchy
of the fMM and GBFHS variants.

5 dfMMlb is Equivalent to GBFHSlb

In this section we show the equivalence of dfMMlb and
GBFHSlb. In essence, we show that every fraction of
dfMMlb can be mapped to a split function of GBFHSlb, and
vice versa, such that both algorithms expand the same se-
quence of nodes (the same set of nodes in the same order).

To show the equivalence, we need to: (1) define appropri-
ate split function for GBFHSlb given a fraction p of dfMMlb;
and (2) define an appropriate dynamic fraction p for dfMMlb

given a split 〈gLimF , gLimB 〉 for every value of fLim . We
will tackle both tasks in their respective order.

To utilize the benefits of the lb-propagation, we require
a tie-breaking that favors nodes from one side (either for-
ward or backward) (Shperberg et al. 2019b). For fMMlb this
means that all nodes in the favored direction are expanded
before nodes in the opposite direction with the same pri-
ority, whose priority is induced by their g-value. Formally,
let D be the favored direction. Before expanding node n′

in direction D with priority prD(n′) =
gD(n′)

qD
+ ε, every

node n with in direction D with priority prD(n) = prD(n′)
has already been expanded. For GBFHSlb all nodes n in
the favored direction D with fD(n) ≤ fLim and gD(n) <
gLimD are expanded before any node n′ in direction D with
fD(n′) ≤ fLim and gD(n′) = gLimD − 1. We denote this
tie-breaking constraint as lb-tie-breaking.

5.1 Defining GBFHSlb given dfMMlb

Given dfMMlb with a fraction p, that without loss of gener-
ality prioritize the forward direction in the lb-tie-breaking,
we define the following split function denoted by split(p):

gLimF = 
p · (fLim + 1− ε)�
gLimB = �(1− p) · (fLim + 1− ε)

split(p) is used in the following theorem.
Theorem 4. Given dfMMlb with a fraction p, GBFHSlb us-
ing split(p) expands nodes n in direction D if and only if
prD(n) ≤ fLim .

To prove this theorem the following two lemmas are used.
Lemma 5. Given dfMMlb with a fraction p, if prD(n) >
fLim for a node n in direction D, then GBFHSlb using
split(p) does not expand n.

Proof. Let n be a node in the direction D with prD(n) >

fLim . Thus, either fDlb
(n) > fLim or gD(n)

qD
+ ε > fLim .

We will tackle these two cases in their respective order.

Case 1: fDlb
(n) > fLim . Since GBFHSlb only expand

nodes with fDlb
(n) ≤ fLim , it does not expand n.

Case 2:
gD(n)
qD

+ε > fLim . Since we have already proven in
Case 1 that nodes n with fDlb

(n) > fLim are not expanded
by GBFHSlb, we can further limit Case 2 to nodes for which
fDlb

(n) ≤ fLim .
Assume in contradiction that GBFHSlb can expand n.
Since Case 2 is limited to nodes with fDlb

(n) ≤
fLim , GBFHSlb can expand n if and only if gD(n) <
gLimD . Therefore, using the definition of split(p),
gD(n) < 
qD · (fLim + 1− ε)�. Using the integer-cost
assumption, gD(n) ≤ 
qD · (fLim + 1− ε)� − 1. Since

qD · (fLim + 1− ε)� ≤ qD · (fLim − ε) + 1, gD(n) ≤
qD · (fLim − ε) + 1 − 1 = qD · (fLim − ε). The pre-
vious inequality can be combined with the assumption of
Case 2, gD(n)

qD
+ ε > fLim , to get the following inequality:

qD·(fLim−ε)
qD

+ ε > fLim . This results in a contradiction,
fLim > fLim . Therefore, GBFHSlb does not expand n.

Lemma 6. Given dfMMlb with a fraction p, if for node n,
prD(n) ≤ fLim , then GBFHSlb using split(p) expands n in
direction D.

Proof. Let n be a node in the direction D with prD(n) ≤
fLim . Thus fDlb

(n) ≤ fLim and gD(n)
qD

+ ε ≤ fLim .

Case 1: D is forward.
gF (n)

p + ε ≤ fLim , therefore,
gF (n) ≤ p · (fLim − ε) < 
p · (fLim + 1− ε)� = gLimF .
Thus, n is expanded by GBFHSlb.
Case 2: D is backward. First, observe that if gB(n) >
gLimB (and therefore gB(n) ≥ gLimB + 1):

prB(n) ≥ gLimB + 1

1− p
+ ε

=
�(1− p) · (fLim + 1− ε)+ 1

1− p
+ ε

>
(1− p) · (fLim − ε)

1− p
+ ε

= fLim

Thus, gB(n) ≤ gLimB . If gB(n) < gLimB , n is ex-
panded by GBFHSlb. Otherwise, gB(n) = gLimB , and due
to the lb-tie-breaking, there are no nodes n′ in OpenF with
fF (n

′) ≤ fLim and gF (n
′) < gLimF . Let n′ be the node in

OpenF for which lb(n) = lb(n, n′). Since prB(n) ≤ fLim ,
and prB(n) ≥ lb(n) ≥ gF (n

′) + gB(n) + ε, we know that
gF (n

′) + gB(n) + ε ≤ fLim . Moreover, since the minimal
g-value for any nodes n′ in OpenF with fF (n

′) ≤ fLim
is gLimF , gLimF + gB(n) + ε ≤ gF (n

′) + gB(n) + ε. In
addition, gLimF + gB(n) + ε − 1 < gLimF + gB(n) + ε.
Thus, gLimF + gB(n)+ ε− 1 < fLim . By isolating gB(n),
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we get that gB(n) < fLim − ε + 1 − gLimF . Therefore,
since fLim = gLimF + gLimB + ε − 1, gB(n) < gLimB ,
in contradiction to the result that gB(n) = gLimB .

The proof of Theorem 4 is immediate using the above two
lemmas. In addition, since Theorem 4 holds for any value
of fLim , it follows that GBFHSlb with the proposed split
function always expands nodes with minimal priority value,
and the minimal priority equals fLim at any given time.
Note that any tie-breaking that obeys the lb-tie-breaking
constraint can be used by both GBFHSlb and dfMMlb. As
a result, both GBFHSlb with the suggested split function
and dfMMlb expand the same set of nodes in the same or-
der of expansion. Finally, since GBFHSlb and dfMMlb have
the same stopping criteria when the minimal priority value
is equal to fLim , both algorithms terminate at the same time.

5.2 Defining dfMMlb given GBFHSlb

We now proceed to the task of defining an appropriate dy-
namic fraction p for dfMMlb. Given GBFHSlb with lb-tie-
breaking that, without loss of generality, priorities the for-
ward side, and with a split function 〈gLimF , gLimB 〉 for
every value of fLim , we define a fraction p as follows:

p(gLimF , gLimB ) =
gLimB

gLimF + gLimB − 1

Thus, for the opposite side,

1− p(gLimF , gLimB ) =
gLimF − 1

gLimF + gLimB − 1

Using this fraction, we prove the following Theorem.

Theorem 7. Given GBFHSlb with a split 〈gLimF , gLimB 〉
for every value of fLim , dfMMlb with p(gLimF , gLimB )
expands a node n if and only if (fDlb

(n) ≤ fLim and
gD(n) < gLimD ).

Proof. Given fLim and a split 〈gLimF , gLimB 〉 such that
fLim = gLimF +gLimB +ε−1, we want to make sure that
the priority functions of dfMMlb maintain the behavior of
GBFHSlb. Thus, we require all of the following conditions:

1. Nodes n in direction D with fDlb
(n) > fLim need to

have prD(n) > fLim;
2. Nodes n in direction D with gD(n) ≥ gLimD need to

have prD(n) > fLim; and
3. Nodes n in direction D with gD(n) < gLimD and

fDlb
(n) ≤ fLim need to have prD(n) ≤ fLim .

We will now show that the all of the above conditions are
satisfied.

Condition 1. Since prD(n) ≥ fDlb
(n), this condition holds

for any fraction p.

Condition 2. Case 1: D is forward. Since prF (n) ≥
gF (n)

p + ε,

prF (n) ≥ gF (n)
gLimF−1

gLimF+gLimB−1

+ ε

=
gF (n) · (gLimF + gLimB − 1)

gLimF − 1
+ ε

Since gF (n) ≥ gLimF , gF (n)·(gLimF+gLimB−1)

gLimF−1
+

ε ≥ gLimF ·(gLimF+gLimB−1)

gLimF−1
+ ε. In addition, since

gLimF ·(gLimF+gLimB−1)

gLimF−1
+ ε > gLimF + gLimB − 1 +

ε = fLim , we know that prF (n) > fLim .
Case 2: D is backward. Assume by contradiction that
prB(n) ≤ fLim . Thus, there exists a node n′ in OpenF such
that fFlb

(n′) ≤ fLim and gF (n
′)+gB(n)+ε ≤ fLim . Since

gB(n) ≥ gLimB , gF (n′)+gB(n)+ε ≥ gF (n
′)+gLimB+ε.

Thus, gF (n′) + gLimB + ε ≤ fLim . Using the definition of
fLim , gF (n′)+ gLimB + ε ≤ gLimF + gLimB + ε− 1. By
isolating gF (n

′), we get that gF (n′) ≤ gLimF − 1. There-
fore,

gF (n
′)

p(gLimF , gLimB )
≤ gLimF − 1

gLimF−1

gLimF+gLimB−1

= fLim

According to the lb-tie-breaking, n′ should have been ex-
panded before n, in contradiction to n′ ∈ OpenF .
Condition 3. Let n be a node in the direction D. Condition
3 dictates that if gD(n) < gLimD and fDlb

(n) ≤ fLim ,
then prD ≤ fLim . Since fDlb

(n) > fLim , we only need to
verify that gD(n)

qD
+ ε ≤ fLim .

Observe that the expression gD(n)
qD

+ ε is monotonically in-
creasing with the value of gD(n), therefore, it is sufficient
to demand that gD(n)

qD
≤ fLim for nodes with gD(n) =

gLimD − 1. Thus, we require the following two inequalities
to hold:

gLimF − 1

p
+ ε ≤ fLim (1)

gLimB − 1

1− p
+ ε ≤ fLim (2)

Substituting fLim with gLimF+gLimB+ε−1 in inequality
1 results in the following inequality:

p ≥ gLimF − 1

gLimF + gLimB − 1

Similarly, performing the same substitution in inequality 2
results in the following inequality:

p ≤ gLimF

gLimF + gLimB − 1

Thus, choosing p =
gLimF−1

gLimF+gLimB−1
satisfy both in-

equalities, and therefore condition 3.
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Similarly to Theorem 4, Theorem 7 holds for any value of
fLim . Therefore GBFHSlb with the proposed split function
always expands nodes with minimal priority value, and that
minimal priority equals fLim at any given time. As a result,
dfMMlb with the suggested fraction and GBFHSlb expand
the same set of nodes in the same order of expansion. Fi-
nally, since GBFHSlb and dfMMlb have the same stopping
criteria when the minimal priority value is equal to fLim ,
both algorithms terminate at the same time.

6 Analysis of Algorithm Implementations

We have explored the minimal number of nodes expansion
(MNE) for fMM and GBFHS variants. In this section we
discuss implementation aspects of the different algorithms.

fMM with a fixed fraction was originally implemented us-
ing a priority queue that contains all nodes from both open
lists. This implementation can be improved by clustering to-
gether nodes that have similar f - and g- values and using
the priority queue on the set of clusters instead of the set of
nodes. This technique, known as g-f -buckets, was originally
suggested for unidirectional heuristic search by Burns et al.
(2012) and adapted for Bi-HS by Barley et al. (2018); Shper-
berg et al. (2019a); and Shperberg et al. (2019b). Using g-
f -buckets, each expansion requires an overhead of O(logL)
where L is the number of clusters in G (bounded by the num-
ber of states |V |), and memory of O(|V |). 5

Supporting dynamic fractions requires additional over-
head. Updating the fraction requires to change the priority
of every cluster in the priority queue every time the minimal
priority value is changed in a given direction. Since the num-
ber of clusters in the open list at any given time is bounded
by L, the entire update process is bounded by O(L) time (the
time required for updating the cluster priorities and recon-
structing the heap). In addition, since the minimal priority
value is a lower-bound on the solution, the number of differ-
ent minimal priorities is less than or equal to C∗.Moreover,
the number of different minimal priorities is also bounded
by the number of clusters, therefore, there could be at most
O(min{C∗, L}) priority queue updates. Thus, the additional
overhead of fMM with dynamic fraction compared to fMM
with fixed fraction is bounded by O(min{L · C∗, L2}).

Finally, fMMlb requires additional information of nodes
in the opposite direction to compute the lb values; this
lb computation costs O(L) time per update. Here too,
the lb values need to be updated only O(min{C∗, L})
times. Therefore, this addition also induces an overhead of
O(min{L · C∗, L2}) compared to fMM.

Barley et al. (2018) did not mention any implementation
details when introducing GBFHS. In practice, GBFHS finds

5The actual overhead is induced by the number of clusters in
OPEN at every given moment, not by the number of clusters in G.
However, it is harder to reason about the number of clusters in the
open list, as it dependents on the search process and on non-trivial
characteristics of the problem instance. In addition, after retrieving
the cluster with the minimal priority, the entire cluster needs to be
expanded before the minimal priority changes. Thus, the amortized
cost of all expansions is O(|V |+ L) instead of O(|V | · log(L)).

the set of expandable nodes in each iteration. The task of
finding the set of expandable nodes is analogous to that of
updating the priorities of nodes when updating the dynamic
fraction of fMM. Consequently, the computational effort of
GBFHS and fMM with dynamic fraction is similar. More-
over, since the task of performing the lb-propagation and
the task of finding the set of expandable nodes in GBFHS
require a similar computational effort, the complexity of
GBFHSlb is comparable to the complexity of GBFHS. As
a result, to the best of our knowledge, the implementations
of fMMlb and GBFHSlb require similar computational re-
sources, so they are equal in that aspect as well.

7 Summary and Conclusions

We analysed GBFHS and fMM, two parametric bidirec-
tional heuristic search algorithms. We showed that when
both algorithms aim to meet at the same point, the MNE
value of GBFHS is at least as small as the MNE value of
fMM, and for some instances it was shown to be strictly
smaller. Therefore GBFHS is said to dominate fMM with
respect to MNE. We then showed that dfMMlb dominates
GBFHS and fMM, and that dfMMlb and GBFHSlb have
the same MNE value for every instance. We then showed
a straightforward mapping between dfMMlb and GBFHSlb

under which both algorithms expand the same sequence of
nodes for any problem instance. Finally, we examined the
complexity of existing implementations of all of the above
algorithms and deemed that dfMMlb and GBFHSlb require
comparable computational resources.

The equivalence between dfMMlb and GBFHSlb indi-
cates that all theoretical properties proven for one algorithm
hold for both algorithms. Specifically, as proven for fMM,
GBFHSlb with the right split function is now known to be
optimally efficient (when considering admissibility on IAD
given problem instance from ICON, as mentioned in Section
2.1). In addition, as proven for GBFHS, dfMMlb is guaran-
teed to halt after finding the first solution in unit edge cost
domains. Finally, both GBFHSlb and dfMMlb are reasonable
and well-behaved.

Which algorithm should one use? From a pedagogi-
cally point of view one might claim that GBFHSlb is sim-
pler to understand and to reason about. The reason is that
its iterative-deepening-based structure is relatively intuitive.
This is in contrast to the priority function of fMM which
has a term that uses g(n)

p (and g(n)
1−p ) which is not easy to

grasp when first encountered. In addition fMMlb needs to
updates the priorities and this adds pedagogical complex-
ity. On the other hand, the fMM family of algorithms has a
known best-first search structure, while the expansion struc-
ture of GBFHS and GBFHSlb is less intuitive as it contains
the notion of expandable nodes. The choice of the algorithm
is course a matter of personal taste/opinion. Nevertheless, it
is important that no matter which algorithm one chooses, the
similarity between these algorithm is known.
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