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Abstract

Heuristic search-based planning techniques are commonly
used for motion planning on discretized spaces. The perfor-
mance of these algorithms is heavily affected by the resolu-
tion at which the search space is discretized. Typically a fixed
resolution is chosen for a given domain. While a finer res-
olution allows for better maneuverability, it significantly in-
creases the size of the state space, and hence demands more
search efforts. On the contrary, a coarser resolution gives
a fast exploratory behavior but compromises on maneuver-
ability and the completeness of the search. To effectively
leverage the advantages of both high and low resolution dis-
cretizations, we propose Multi-Resolution A* (MRA*) algo-
rithm, that runs multiple weighted-A*(WA*) searches hav-
ing different resolution levels simultaneously and combines
the strengths of all of them. In addition to these searches,
MRA* uses one anchor search to control expansions from
these searches. We show that MRA* is bounded suboptimal
with respect to the anchor resolution search space and resolu-
tion complete. We performed experiments on several motion
planning domains including 2D, 3D grid planning and 7 DOF
manipulation planning and compared our approach with sev-
eral search-based and sampling-based baselines.

1 Introduction

Search-based planners are known to be sensitive to the size
of state spaces. The three main factors that determine the
size of a state space are the state dimension, the resolution
at which each dimension is discretized and the size of the en-
vironment or the map (Elbanhawi and Simic 2014). The size
of state spaces grow exponentially with increased dimen-
sion and polynomially with increased resolution. Search-
based planning methods discretize the configuration space
into cells. A cell is the smallest unit of this discrete space
and represents a small volume of configuration space state
that lies within it. The resolution of the discretization deter-
mines the size of a cell. A representative state within a cell,
commonly its geometric center is picked to denote a vertex
for that cell.

Consider a large sized map most of which is free space,
yet it has a number of narrow passages, which the planner
has to find paths through for a point robot. Fig. 1 shows two
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Figure 1: Discretization of maps with high (grey) and
low (orange) resolutions. To the left, solution via transitions
only through coarse cells does not exist. To the right, on the
other hand, it is computationally expensive for the search to
escape local minimum on a high resolution map.

snippets from this map discretized at two resolution levels.
For the example snippet shown in Fig. 1(a), to find a path
from Sgar tO Sgoal, @ search with the coarse resolution space
will fail since the passage is too narrow for any of the coarse
cells to be traversable. Not only does a low resolution space
weaken the completeness guarantee, but it also sacrifices so-
lution quality.

Consider another example map shown in Fig. 1(b). For
this problem instance, it is evident that the high resolution
search would require a lot more expansions before it es-
capes the local minimum than the lower resolution search.
Clearly, some portions of a map are best to be searched
with coarse resolution while other portions may require a
different, finer, resolution to find a solution. To this end,
we propose the Multi-Resolution A* (that we shorten as
MRA¥*) algorithm to combine the advantages of different
resolution discretizations by employing multiple weighted-
A* (WA*) (Pohl 1973) searches that run on the different res-
olution state spaces simultaneously.

MRA* uses multiple priority queues that correspond to
searches at each resolution level. However, states from dif-
ferent discretizations that coincide are considered as the
same state and thus, when generated by any search, they are
shared between corresponding queues. Our approach bears
some resemblance to Multi-Heuristic A* (MHA*) algo-
rithm (Aine et al. 2016); MHA* uses multiple possibly inad-



missible heuristics in addition to a single consistent anchor
heuristic which is used to provide suboptimality bounds. In-
stead of taking advantage of multiple heuristics in different
searches, we leverage multiple state spaces at different res-
olutions. To provide suboptimality guarantees we use an an-
chor search which runs on a particular resolution space. We
prove that MRA* is bounded suboptimal with respect to the
optimal path cost in the anchor resolution space and resolu-
tion complete (LaValle 2006).

We conduct experiments on planning in 2D and 3D and
on manipulation planning for a 7-DOF robotic arm, and
compare MRA* with other search-based algorithms and
sampling-based algorithms. The results suggest that MRA*
outperforms other algorithms for various performance met-
rics.

2 Related Work

Motion planning in high dimensional and large-scale do-
mains is challenging both for search-based and sampling-
based approaches (Petrovic 2018).

Sampling-based methods are popular candidates for high-
dimensional motion planning problems. They have an ad-
vantage that they do not rely on discretizations, rather
they use random sampling to discretize the state space.
Randomized methods such as RRT (LaValle 2006) and
RRT-Connect (Jr. and LaValle 2000) quickly explore high-
dimensional space due to their random sampling feature.
Although fast, these algorithms are non-deterministic and
provide no guarantees on the quality of solutions that
they found. Optimal variants such as RRT* (Karaman and
Frazzoli 2011) provide asymptotic optimality guarantees,
namely, they reach optimal solution as the number of sam-
ples grows to infinity. Following RRT*, a family of al-
gorithms including FMT* (Janson et al. 2015), RRT*-
Smart (Islam et al. 2012) and Informed-RRT* (Gammell,
Srinivasa, and Barfoot 2014) were developed to improve
the convergence rate of RRT*. These algorithms improve
the quality of the solutions over time but do not provide
bounds on the intermediate solution quality. Moreover they
often give inconsistent solutions - generate very different so-
lutions for similar start and goal pairs - due to their inherent
randomised behavior.

It is well-known that search-based planners suffer from
the curse of dimensionality (Bellman 1957). They rely on
a specific space discretization, the choice of which largely
affects the computational complexity and properties of the
algorithm. Several methods have been proposed to alleviate
this problem on discrete grids. Moore et al. came up with
the Parti-game algorithm (Moore and Atkeson 1995), which
adaptively discretizes the map with high resolution at the
border between obstacles and free space and low resolution
on large free space. Similarly, this notion is implemented via
quad-tree search algorithms (Garcia, Kapadia, and Badler
2014; Yahja et al. 1998). These algorithms are memory effi-
cient in sparse environments, however, in cluttered environ-
ments, these approaches show little to no advantages over
uniformly discretized map because of the overhead in book-
keeping of the graph edges. In our experiments, we show
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comparison with one of these adaptive discretization meth-
ods.

In addition to grid search, search over implicit graphs
formulated as state lattices (Pivtoraiko and Kelly 2005) is
ubiquitous in both navigation and planning for manipula-
tion (Cohen, Chitta, and Likhachev 2010). These methods
rely on motion primitives which are short kinematically fea-
sible motions that the robot can execute. In (Likhachev and
Ferguson 2009), graph search for autonomous vehicles was
run on a multi-resolution lattice state space. More specifi-
cally, they used high resolution space close to the robot or
goal region and a low resolution action space elsewhere.
Similarly, the Hierarchical Path-Finding A* (HPA*) algo-
rithm (Botea, Miiller, and Schaeffer 2004) pre-processes
maps into different levels of abstractions. Then the complete
solution is constructed by concatenating segments of trajec-
tories within a local cluster which belongs to higher level
abstraction path. This approach relies on the condition that
there is a smooth transition between high and low resolu-
tion abstractions. Besides, these hierarchical structures re-
quire large memory footprint for maintaining the different
abstractions and have significant computational overhead for
pre-processing. Compared to HPA*, MRA* runs search over
an implicitly constructed graph (generated on the fly during
search) and therefore, it requires less memory and no pre-
computation overhead.

Another class of methods plan in non-uniform state di-
mension and action to reduce the size of search state
spaces (Cohen et al. 2011; Cohen, Chitta, and Likhachev
2014). Cohen et al. observed that not all the joints of a ma-
nipulator need to be active throughout the search, for ex-
ample the joints at the end-effector might only be required
to move near the goal region. By restricting the search di-
mension in this manner, they gain considerable speedups.
Though efficient, this approach could potentially sabotage
the completeness of the search. To overcome this limita-
tion, planning with adaptive dimensionality (Kalin Gochev
and Likhachev 2013; Vemula, Miilling, and Oh 2016) al-
lows searching in lower dimension most of the time and only
requires searching in the high dimension when necessary.
On related lines, (Brock and Kavraki 2001) decomposes
the original problem into several high-dimensional and low-
dimensional sub-problems in a divide-and-conquer fashion.
Their method provides guarantees on completeness but not
optimality. Our approach is different from these methods in
that our decomposition is based on multiple resolutions in-
stead of multiple dimensions in a way that provides com-
pleteness and bounded suboptimality guarantees.

3 Multi-Resolution A*

In a nutshell, MRA* employs multiple WA* searches in dif-
ferent resolution spaces (high and low) simultaneously and
shares the states that coincide on the respective discretiza-
tions. To gain more benefit out of the algorithm, the resolu-
tions should be selected such that more sharing is facilitated.
If no sharing is allowed at all, the algorithm would degen-
erate into several independent searches and the solution will
be returned by any search that would satisfy the termina-
tion criterion first. In addition to these searches, MRA* uses



Algorithm 1 Multi-Resolution A*

Algorithm 2 ExpandState

1: procedure MAIN

2 g(sstart) =0 g(sgoal) = 00

3 bp(Sstart) = bp(Sgoa1) = null

4 for: =0,...,ndo

5: OPEN; <— 0

6 CLOSED; «— 0

7 if © € GETSPACEINDICES(Sgtart) then

8: Insert sstart in OPEN; with KEY(s, )

9:  while OPEN; # () for each i € {0,...,n} do
10: i +— CHOOSEQUEUE( )

11: if OPEN; MINKEY() < w2 * OPENg.MINKEY() then
12: if g(sgoa1) < OPEN; MINKEY() then
13: Return path pointed by bp(g(sgoal))
14: else
15: s = OPEN;.Pop()

16: EXPANDSTATE(s, ©)
17: Insert s into CLOSED;

18: else
19: if g(Sgoa1) < w2 x OPEN.MINKEY() then
20: Return path pointed by bp(g(sgoal))
21: else
22: s = OPENy.Pop()
23: EXPANDSTATE(s, 0)
24: Insert s into CLOSEDg

an anchor search which is an optimal A* search, to anchor
the state expansions from these searches in order to provide
bounds on the solution quality. In the remainder of this sec-
tion we formally describe our algorithm. We will also dis-
cuss the theoretical properties of this algorithm.

3.1 Problem Definition and Notations

In the following S denotes a discretized domain. Given a
start state Sgpar¢ and a goal state Sgoa1 , the planning prob-
lem is defined as finding a collision free path from sggart
t0 Sgoal i S. The cost from sgar to a state s is denoted
as g(s), optimal cost to come is denoted by g*(s) and bp(s)
is a back-pointer which points to the best predecessor of s (if
one exists). The function ¢(s, s’) denotes non-negative edge
cost between any pair of states in S. Throughout the algo-
rithm the anchor search and its associated data structures are
indexed by 0 whereas other searches are denoted with in-
dices 1 through n.

We have multiple action sets {Ag, 41,...,A4,} corre-
sponding to different resolution spaces, where A; is a set of
actions for resolution i. SUCCS(s, i) returns all successors
of s for resolution ¢ generated using the action space A;.
GETSPACEINDICES(s) returns a list of indices of all the
spaces which the state s coincides with. Furthermore, we
assume that we have access to a consistent heuristic func-
tion h(s). Each WA* search uses a priority queue OPEN;
with the priority function KEY(s,) and a list of expanded
states CLOSED;. In the priority function KEY (s, 7)(Alg.2
Line 1), all WA* searches share the same weight w;. Ad-
ditionally, each queue has a function OPEN,;.MINKEY()
which returns the minimum KEY value for the ith queue.
It returns oo if the queue is empty.
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1: procedure KEY(s,17)

2 if ¢ = 0 then

3 return g(s) + h(s)

4 else

5 return g(s) + wih(s)

6: procedure EXPANDSTATE(S, %)

7:  forall s’ € Succs(s,i)do

8: if s was never generated then

9: g(s") = o0; bp(s’) = null;
10: if g(s') > g(s) + c(s, s’) then
11: g(s') = g(s) +c(s,8"): bp(s') = s
12: for each i € GETSPACEINDICES(s") do
13: if s’ ¢ CLOSED; then
14: Insert/Update s’ in OPEN; with KEY(s’, ©)

3.2 Algorithm

The main algorithm is presented in Alg. 1. The lines 2- 8 ini-
tialize the g values and back pointers of sgar¢ and sgoa1, and
OPEN and CLOSED for each queue and insert Sgta,¢ into all
queues with which sg¢a, coincides with the corresponding
priority values.

The algorithm runs until all the priority queues get
empty (line 9) or any of the two termination criteria (lines 12
or 19) are met. At line 10, in function CHOOSEQUEUE(), we
employ a scheduling policy to make decision on from which
non-empty queue to expand a state in current iteration. This
scheduling policy could be a round-robin strategy, Dynamic
Thompson Sampling (DTS) policy or other scheduling poli-
cies, as is suggested in (Phillips et al. 2015) !. The condi-
tion in line 11 controls the inadmissible expansions from
other queues. Inadmissible searches are suspended and an-
chor search is employed whenever this condition fails. As
a consequence, the solution returned from any search will
be within the suboptimality bound wsy of the optimal solu-
tion in the anchor space. The expansions from the anchor
queue monotonically increase OPEN(.MINKEY()(s) as the
anchor is a pure A* search, allowing more states to be ex-
panded from the other queues. The minimum priority state
is popped from OPEN; and then added to the corresponding
CLOSED;.

Details of a state expansion are presented in Alg. 2. The
EXPANDSTATE(s, ¢) function “partially” expands state s in
the search ¢ by using actions A;. If the successors of s are
duplicates of states in other spaces, they are inserted or up-
dated in the corresponding searches as well. This is how the
paths or the g values of the states are shared between the dif-
ferent searches. In this procedure, the condition at Line 10
indicates that a state will only be updated in a queue if its g
value is improved. A state s is only inserted in a queue if it
was not expanded before from the same queue and if it coin-
cides with the discretization of that queue (see lines 12- 14).

'In DTS policy, the selection of a queue is viewed as a multi-
arm bandit problem (Gupta, Granmo, and Agrawala 2011), where
the reward from a “’bandit” is equal to the search progress made by
the decision, reflected in the decrease of chosen queue’s top state’s
heuristic value.
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(a) MRA* is initialized. State (b) State A2 is expanded by high
resolution search. Since state B2
lies at the center of a coarse cell,

Sstart (A2) is inserted into Q.

(c) State B2 is expanded by (d) State A3 is expanded by high
low resolution search. The suc- resolution search.
cessor E2 is inserted into both

it is also inserted into Q2. queues.
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(e) State E2 is expanded by low
resolution search and the suc-
cessor E5 is inserted into both
queues.

(f) The last step when sgoal is ex-
panded by high resolution search.
A solution (solid line segments) is
found with 8 expansions in total.

(g) The final status of a high res-
olution search. The same solu-
tion (purple) is found with 17 ex-
pansions.

Figure 2: Illustration of MRA* algorithm—Thick (orange) lines and thin (grey) lines show the low and high resolution grids
respectively. The heuristics used is Manhattan distance. MRA* initializes in Fig. 2(a). Figs. 2(b) to 2(e) show the first four
expansions of MRA* and Fig. 2(f) shows the last expansion when the search terminates. OPEN lists for the high and low
resolution searches are denoted as Q; and Qs respectively. Expanded states are shown in black, states in OPEN lists are shown
in green and the states that coincide between the two spaces are shown in red. The path returned by MRA* is composed of
edges from both high (red) and low (purple) resolution spaces. Fig. 2(g) illustrates the behaviour of WA* search only in the

high resolution grid.

Fig. 2 provides a simple 2D illustration of the MRA* al-
gorithm. We use two resolutions (high and low) in this ex-
ample and MRA* alternatively expands states from the two
queues. The cell size (the length of a side) of the low reso-
lution space is 3 times the size of the high resolution space.
For the sake of simplicity, we assume that the suboptimal-
ity bound ws is very high such that anchor queue is never
expanded i.e the condition in line 11 is never violated. We
also assume that the weights w; are high enough that the
WA* searches are purely greedy. Fig. 2(g) shows the result
if we would only run a single high-resolution search for the
same example for comparison. It is evident that benefiting
from the sharing feature between multiple resolution spaces,
MRA¥* found the solution with much less expansions than
the high resolution WA* search.

3.3 Analysis

Theorem 1. MRA* partially expands a state at most once
with respect to each inadmissible search and anchor search.
This holds true by construction (see lines 12- 14)

Theorem 2. MRA* is complete in the union space of
alln + 1 resolution spaces.

The union space is defined as the space constructed as a re-

sult of sharing coincident states between the different res-
olution spaces. This theorem also holds by construction as
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the algorithm terminates only if it finds a solution or all the
resolution spaces get exhausted (Alg. 1, line 9)

Theorem 3. In MRA¥*, solution returned by any search i
with total cost g;(Sgoa1) is bounded as:

gi(sgoal) < wa x gg(sgoal)

where g (Sgoa1) is the optimal solution with respect to an-
chor resolution.

Proof. If the anchor search terminates at Alg. I, line 20
then because the anchor search is an optimal A* search,
from (Pearl 1984), we have

(D

gO(Sgoal) < wa * gs (Sgoal)

If any other search terminates (Alg. 1, line 13), then from
lines 11 and 12, and because the anchor search is A* search
we have,

9i(Sgoa1) < wa ¥ OPENg.MINKEY ()

2
< wa * g3 (Sgoa1) From (Pearl 1984) @

O



Figure 3: A 2D solution example. The planner is planning
from start (square) to goal (star). The red dots are expanded
states and the blue line is the solution returned by planner.

4 Experiments and Results

We evaluate our algorithm on 2D, 3D and 7D domains
and report comparisons with different search-based and
sampling-based planning approaches in terms of planning
time, solution cost, number of expanded states (only for
search-based algorithms) and success rates. All experiments
were run on an Intel i7-3770 CPU (3.40 GHz) with 16GB
RAM. In all experiments, we set a timeout of 120 sec-
onds. For 2D and 3D spaces, we used 8-connected and 26-
connected grids. For 7D experiments we used PR2 robot’s
single-arm and constructed the graph using a manipula-
tion lattice (Cohen et al. 2011). The heuristics used for 2D
and 3D domains are octile distance and euclidean distance
respectively. For manipulation problems, the heuristic was
computed by running a backward 3D Dijkstra’s from the
end-effector’s position at the 6-DoF goal pose. We used Eu-
clidean distance as cost function for 2D and 3D, and Man-
hattan distance in joint angles for 7D. For all the domains,
the anchor search of MRA* is set as the highest resolution
space. As the queue selection policy, we used round-robin
policy for 2D and 3D, and DTS for the 7D domain. For
every domain, we plot statistics showing improvements of
MRA¥* over baselines, where improvements are computed
as the average metric values of baselines divided by that of
MRA*’s (Fig. 5). For these plots we only report results for
common success tests. In addition, we also show tabulated
results for all the metrics (Table 1). The code of MRA* al-
gorithm will be available here?.

4.1 2D Space Planning Results

Domain: We wused two different maps discretized
into 10,000 x 10,000 cells as the highest resolution
discretization. Additionally, we have middle and low reso-
lutions whose cells are 7 and 21 times the size of highest
resolution cells respectively. The benchmark maps are from
Moving Al Lab (Sturtevant 2012) Starcraft category. For
each map, we have 100 randomly generated start and goal
pairs. We compare our algorithm with four baselines, three
of which search over implicit graph. These are WA* with
Multiple Resolutions (WA-MR), WA* with highest reso-
lution (WA-High) and with lowest resolution (WA-Low).

“http://www.sbpl.net/Software
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WA-MR’s action space uses the union of all the resolution
spaces in a single queue. The fourth baseline searches over
a pre-constructed explicit graph that is the quad-tree search
method (Garcia, Kapadia, and Badler 2014) (QDTree). In
quad-tree experiments, to book-keep neighbors of a grid,
we followed the methods suggested in (Li and Loew 1987b;
1987a). For our algorithm, we set the w; and w» values both
to 3.0. For other search-based algorithms, we set the weight
to 3.0 as well, which would enforce the same suboptimality
bounds for all the algorithms.

Results and Analysis: The results of 2D planning are pre-
sented in Fig. 5(a) and Table. 1a. A test map and a sample so-
lution from MRA* is shown in Fig. 3. In the top-right region
of the right figure, we can see that MRA* sparsely searched
the local minimum region and exited swiftly. This is consis-
tent with the behaviour that we described in Fig. 2.

Our algorithm outperforms WA-MR and WA-High in
speed and number of expansions as shown in Fig. 5(a).
The speedup comes from the fact that WA-MR performs a
full expansion of a every state which is expensive whereas
MRA* only uses partial expansions. WA-High searches only
in the highest resolution which is also expensive, MRA*
on the other hand leverages the low resolution space to
quickly escape local minima and uses the high resolution
space to plan through narrow passages. WA-Low is faster
than MRA* since it only searches in the lowest resolution
space, but it also makes it incomplete with respect to the
high resolution space. This is verified by the lowest success
rate in Table. 1a. QDTree is faster compared to MRA* be-
cause the quad-tree map discretization is done in such a way
that large open spaces are not further discretized into smaller
units, this helps to keep the size of state space small. How-
ever the graph construction step is computationally expen-
sive and had an average pre-computation time of 36 sec-
onds for the two maps. The quality of solutions as indicated
by the average solution costs in Table. 1a for each algorithm
is comparable except QDTree which relatively shows higher
costs. This is because QDTree has very coarse discretization
in free spaces.

4.2 3D Space Planning Results

Domain: For 3D also we used two maps, one of them is
shown in Fig. 4. The other map contains outdoor scenes such
as mountains and buildings etc. In the highest resolution, the
maps are discretized to a grid of size 1000 x 1000 x 400
cells. Similar to 2D spaces, we have middle and low resolu-
tions that are 9 and 27 times the size of the highest resolution
respectively. There are 50 trails in total where start and goal
pairs for each trial are randomly assigned. For 3D experi-
ments we only compared with the baselines which search on
implicit graphs i.e. WA-MR, WA-High and WA-Low as the
overhead of constructing the explicit abstraction for this do-
main is very high. In our algorithm, we set the w; and wo
value both to 3.0. For other search based algorithms, we set
the weights to 3.0 as well.

Results and Analysis: The results for scene Fig. 4 are pre-
sented in Fig. 5(b). With the same branching factor, WA*



Table 1: 2D and 3D planning results.

(a) 2D Planning Results (Map1l & Map?2)

Mapl1 Map?2
Algorithm MRA* | WA-MR WA—HIi)gh WA-Low | QDTree || MRA* | WA-MR WA—HIi)gh WA-Low | QDTree
Success Rate (%) 100 100 100 95.5 100 100 98.99 98.99 94.95 100
Mean Time (s) 0.61 572 5.62 0.09 0.15 4.14 18.23 17.73 0.22 0.44
Mean Cost (m) | 324.71 | 325.76 326.32 326.71 341.49 | 37791 | 379.51 382.35 380.55 396.93
(b) 3D Planning Results (Map1 & Map2)
Mapl Map2
Algorithm MRA* | WA-MR | WA-High | WA-Low || MRA* | WA-MR | WA-High | WA-Low
Success Rate (%) 100 100 100 100 100 100 100 100
Mean Time (s) 3.12 19.01 18.88 0.06 4.16 24.16 13.71 0.07
Mean Cost (m) 40.13 38.38 37.04 40.20 32.35 30.45 28.83 31.89

Figure 4: A mesh model of city used as a planning scene for
3D planning.

in coarse resolution space is significantly faster. As men-
tioned earlier, the low resolution implementation is incom-
plete and the suboptimality bounds are also weaker, which
results in lower success rate and poor quality solutions. Re-
garding planning times, MRA* is the fastest as it leverages
the different resolution spaces intelligently to quickly find
solutions.

For WA-MR, as it performs full state expansions the
branching factor becomes very large in 3D i.e. 78, which
deteriorates it’s performance (see Table. 1b). In terms of so-
lution cost, MRA* generates solutions slightly worse than
WA-MR and WA-High, yet still bounded by the same sub-
optimality bound.

4.3 7D Space Planning Results

For 7D domain implementation we used an adaptation of
SMPL?.

Domain: We used PR2 robot’s 7DoF arm for this domain.
We ran the experiments on four different benchmark scenar-
ios (Cohen, Chitta, and Likhachev 2014) as in Fig. 6. The
start and goal pairs were randomly generated for 70 trails
for each scene. We used RRT-Connect (RRT-C) and RRT*
as the sampling-based planning baselines. In addition, we

*https://github.com/aurone/smpl
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tested with WA-MR and WA* with adaptive dimensional-
ity search (Kalin Gochev and Likhachev 2013) (WA-AD)
as search-based planning baselines. The implementations
of sampling-based approaches are used from Open Motion
Planning Library (OMPL) (Sucan, Moll, and Kavraki 2012).
For RRT* we report the results for the first solution found.
For search-based algorithms, we set the weights for WA*
search to be 25. In our algorithm, we set the wy and wy value
to 20 and 25 respectively.

Motion Primitives: A base set of 14 motion primitives
are provided and categorized into classes with low, mid-
dle and high resolutions: Moy, Middies Mhigh. Each mo-
tion primitive changes the position of one joint in both
directions by an amount corresponding to the resolution.
In Miow, Mmiddle and Mgy each action corresponds to a
joint angle change of 27°, 9° and 3° respectively. In addi-
tion to the static motion primitives, adaptive actions are gen-
erated online via inverse kinematics computation (Cohen et
al. 2011) to snap end-effector to the goal pose when the ex-
panded state is within a small threshold distance to the goal
position.

Results and Analysis: We show the experimental results
for the Industrial scene (Fig. 6(c)) presented in Fig. 5(c). The
statistics for the other scenes are very similar and are omit-
ted. In terms of planning times, MRA* outperforms all the
baselines except RRT-Connect. MRA* shows over an order
of magnitude improvements over WA-AD and WA-MR in
planning times and number of expansions, indicating that the
performance gains are higher in higher dimension domains.
With respect to solution cost, MRA* performs no worse than
any other algorithm on common succeeded trials.

From the results documented in Table. 2, MRA* has
consistently high success rates across all the scenes. Al-
though MRA* is slower than RRT-Connect in terms of solu-
tion costs, MRA* (and other search-based baselines) consis-
tently show better solution qualities then RRT-Connect and
even RRT*. While WA-MR performs worst in terms of plan-
ning time and success rate, it consistently provides the best
quality solutions, which could be explained by the fact that
WA-MR searches in the graph which is the union of all res-
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Figure 5: Improvements of MRA* over baseline algorithms
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Figure 6: The planning scenes of single-arm manipulation problem.

olution spaces, and has stricter suboptimality bounds.

5 Discussion

In this section we discuss the choice of algorithm parame-
ters and the selection of resolutions for MRA* searches. We
analysed the effect of varying the parameters, wy and wo,
on the performance of MRA*. We fixed w; = 3.0 and var-
ied w2 and vice versa linearly to analyse the effects of each
parameter independently. The results for the 2D domain are
shown in Fig. 7. Increasing wy speeds up the search as it
allows more expansions from inadmissible (courser resolu-
tion) searches. Increasing wq, first speeds up the search be-
cause it makes the inadmissible searches more greedy. How-
ever, after w; = 2, the search slows down as MRA* starts
expanding more states from the anchor search.

Besides the algorithm parameters, the choice of reso-
lutions also significantly affects algorithm’s performance.
While the choice largely depends on the domain, resolu-
tions should be selected such that the spaces are consider-
ably overlapped so that more sharing is facilitated. Our res-
olution selection criterion ensures that the centers of a lower
resolution cells always coincide with the centers of higher
resolution cells. As a consequence, the states in the lower
resolution spaces will always be shared with the higher res-
olution spaces. We do not claim that it is an optimal selection
scheme and there definitely is more room for investigation.
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Figure 7: Parameters (w1/w2) vs. Planning time(s) in loga-

rithm. Each parameter combination is tested with 3 different
start and goal pairs.

6 Conclusion and Future Work

We presented a heuristic search-based algorithm that utilises
multiple search spaces implicitly constructed with different
resolutions and shares information between them. We show
that MRA* is resolution complete in the union resolution
space and the solution cost returned by MRA* is bounded



Table 2: 7D planning results on 4 scenes.

Kitchen Bookshelf

Algorithm MRA* | WA-AD | WA-MR | RRT-C | RRT* || MRA* | WA-AD | WA-MR | RRT-C | RRT*
Success Rate (%) 95.24 49.21 46.031 95.83 | 75.00 100 57.38 47.54 89.79 | 44.00
Mean Time (s) 3.44 12.55 9.19 0.006 1.04 2.83 8.44 11.62 0.13 9.74
Mean Cost (rad) 7.57 6.22 5.96 15.49 8.16 11.21 9.74 10.38 28.54 | 15.70
Processed Mean Cost (rad) 6.96 5.22 5.26 8.9 7.25 10.77 9.13 9.15 16.93 13.59

Industrial Narrow Passage
Algorithm MRA* | WA-AD | WA-MR | RRT-C | RRT* || MRA* | WA-AD | WA-MR | RRT-C | RRT*
Success Rate (%) 96.92 72.31 15.38 89.83 | 62.07 100 50.00 4091 96.22 | 67.27
Mean Time (s) 3.13 7.61 15.48 0.29 9.84 4.30 7.98 15.21 0.05 4.70
Mean Cost (rad) 13.12 12.77 11.10 29.26 | 16.38 11.92 10.71 10.12 20.90 | 14.39
Processed Mean Cost (rad) | 12.67 11.20 10.53 16.29 | 13.77 11.59 10.60 991 12.42 | 12.20

sub-optimal with respect to the optimal solution cost in the
anchor resolution space. We show that MRA* presents per-
formance improvements over the baselines on large 2D,
3D domains and high-dimensional motion planning prob-
lems, most importantly in terms of success rates which are
consistently high across all the domains and experiments.
While the results are promising, we believe that there is
scope for further improvements. Possible future directions
can be 1) using multiple heuristics within the different res-
olutions searches to speed up the search 2) adding dynamic
motions primitives for efficient sharing between the differ-
ent spaces 3) using a large ensemble of resolution spaces
and optimizing for the scheduling policy and 4) using the
multi-resolution framework for other bounded suboptimal
search algorithms such as Optimistic Search (Thayer and
Ruml 2008) or search with different priority functions (Chen
and Sturtevant 2019).
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