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Abstract

Effective and efficient reasoning in adversarial environments
is important for many real-world applications ranging from
cybersecurity to military operations. Deliberative reasoning
techniques, such as Automated Planning, often restrict to
static environments where only an agent can make changes by
its actions. On the other hand, such techniques are effective
and can generate non-trivial solutions. To explicitly reason
in environments with an active adversary such as zero-sum
games, the game-theoretic framework such as the Double Or-
acle algorithm can be leveraged.
In this paper, we leverage the notions of critical and adversary
actions, where critical actions should be applied before the
adversary ones. We propose heuristics that provide a guidance
for planners about what (critical) actions and in which order
have to be applied in a good plan. We empirically evaluate
our approach in terms of quality of generated strategies (by
leveraging Double Oracle) and CPU time required to generate
such strategies.

Introduction

Automated Planning is an important tool for enabling delib-
erative reasoning of intelligent agents. However, many ap-
plication domains consist of multiple actors – agents, inde-
pendent on each other, that act in order to achieve their goals
– that can either willingly or unknowingly interfere with
each other. Hence, the planning approach has to be modi-
fied in order to handle multiple agents (Bowling, Jensen, and
Veloso 2003; Brafman et al. 2009). To be more specific, in
scenarios in which agents have conflicting goals such as in
zero-sum games each agent has to consider a possible strat-
egy of its opponent while generating its own strategy. Such
scenarios include, for instance, competing for limited re-
sources in games or competing for customers in on-demand
transport services.

Actions of other agents can be represented as exoge-
nous events (Dean and Wellman 1990). There is a range of
techniques that tackle plan generation and execution under
presence of exogenous events. For example, there are tech-
niques based on Markov Decision Process (MDP) (Kolobov,
Mausam, and Weld 2012), Monte-Carlo Tree Search (Patra
et al. 2019), or reasoning about “dangerous states” (Chrpa,
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Gemrot, and Pilát 2017). The above techniques, however, do
not consider scenarios where agents have conflicting goals
and hence hinder each other their pursuit towards goals.

In order to explicitly reason about adversaries while gen-
erating plans, game-theoretic methods have to be leveraged.
Importantly, agents may need to randomise over several
plans, so the other agents have uncertainty about which plan
is going to be executed making it difficult for them to ex-
ploit such a strategy (LaValle 2006). Existing techniques
involving planning and game theory focus on congestion
games where the task is to find an optimal robust multi-
agent plan for non-cooperating agents (Jordán et al. 2018)
or on Stackelberg games where the task is to find a pure plan
of the leader that is robust against the adversary (Speicher et
al. 2018). Such techniques are not able to find randomised
strategies (or plans). While there are several successful ap-
plications of game-theoretic algorithms in practice, for ex-
ample in domains of physical security (Tambe 2011) or pro-
tecting wildlife (Fang, Stone, and Tambe 2015), most of the
methods used for scaling-up are domain-dependent and their
transferability to other domains is limited.

One of the best known game-theoretic algorithms is the
incremental strategy generation method called the Dou-
ble Oracle (DO) algorithm (McMahan, Gordon, and Blum
2003). DO algorithm tackles one common problem of games
– the exponential number of possibilities to choose from.
The number of plans needed to achieve certain goals is usu-
ally exponential with respect to the number of agent’s ac-
tions (while omitting plans with loops, i.e., during the plan
execution none of the states is visited more than once). DO
therefore restricts the space of possible plans to choose from
– the algorithm forms a restricted problem that is itera-
tively expanded by calculating and adding into the prob-
lem new plans as responses to the current strategy of the
other agent from the restricted problem. Although, in the
worst case, all plans have to be added into the restricted
problem, it rarely happens in practice and DO algorithms
are often able to find an optimal strategy using only a
fraction of all possibilities (see e.g (Bošanský et al. 2014;
Lanctot et al. 2017)).

In terms of using domain-independent planning algo-
rithms for computing the (best) response plans, finding an
optimal plan that accounts for best response is often com-
putationally harder than finding any plan (Helmert 2003).
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In particular, many planners produce sub-optimal plans
and improve them until the allocated time expires or the
plans cannot be further improved (Vallati, Chrpa, and Mc-
Cluskey 2018). Rytı́ř, Chrpa, and Bošanský (2019) studied
how effective and efficient is to combine DO with domain-
independent planning algorithms while considering varying
time limits for providing the response plans and varying
granularity of the underlying planning tasks. The results in-
dicate that using domain-independent planning albeit sub-
optimal struggles with scalability.

In this paper, we, in analogy to Rytı́ř, Chrpa, and
Bošanský (2019), provide a framework for formulating plan-
ning tasks in zero-sum games. To tackle the scalability is-
sue we develop (i) an algorithm that computes lower bound
of the time in which each action, defined in the planning
task, can be applied, (ii) a greedy heuristic algorithm for se-
lecting and ordering critical actions in response plans, and
(iii) a local search algorithms for improving the selection
and ordering of critical actions. Whereas (i) prunes alter-
natives that are useless to pursuit with respect to a strat-
egy of the adversary and thus maintaining optimality (if an
optimal planner is used for response plan generation), (ii)
and (iii) provide a structure of response plans and despite
compromising optimality it makes it more efficient to gener-
ate response plans. We evaluate our approach on a resource
collection problem with two competing agents where each
agent controls a group of UAVs and the goal is to collect
information from a defined set of resources before the oppo-
nent (as the resource taken by the opponent will no longer
be available to collect) (Rytı́ř, Chrpa, and Bošanský 2019).
The aim of the evaluation is to demonstrate how the pro-
posed algorithms improve the “classical” approach involv-
ing using domain-independent planning within the DO al-
gorithm (Rytı́ř, Chrpa, and Bošanský 2019).

Related Work
The idea of combining planning and game theory has ap-
peared in previous works, although mostly with different
goals. Often, the goal was to update the planning formal-
ism in order to handle multiple agents and multiple goals
the agents can pursue (Bowling, Jensen, and Veloso 2003;
Brafman et al. 2009). A body of work concerning non-
cooperative multi-agent planning exploits game theory for
generating plans for each agent while minimizing conflicts
with plans of other agents. Resolving such conflicts can
be done by translating the task into an invertible planning
problem (Galuszka and Swierniak 2010), or by selecting
the best plan for each agent from a set of pre-computed
plans using a two-game approach (Jordán and Onaindia
2015). Closer to our work, the conflicts can also be re-
solved by a best-response approach that iteratively improves
plans of each agent (Jonsson and Rovatsos 2011). Such an
approach has been used for planning Electric Autonomous
Vehicles (Jordán et al. 2018). These works, however, focus
on congestion games, for which a single plan can be opti-
mally robust (a pure equilibrium is guaranteed to exist for
this class of games). This, however, is not true for most of
the non-cooperative games and adversarial scenarios. Spe-
icher et al.. (2018) used game theoretic framework of Stack-

elberg games and seek a pure plan of the leader that is robust
against actions of the adversary. Again, we seek a possibly
randomized strategy which poses computation challenges
that are not present when restricting to pure strategies.

There are several existing methods that use the double-
oracle incremental strategy generation method. The original
paper by McMahan, Gordon, and Blum (2003) was used in
the setting where one player sought an optimal way to get
through an area unobserved while the other player placed
the surveillance cameras. In that work and many other
follow-up works (e.g., see (Jain, Conitzer, and Tambe 2013;
Bošanský et al. 2014)), the standard assumption is that the
best response algorithm is capable of computing the opti-
mal plan (or at least a best response with a bounded error)
given the strategy of the opponent. On the other hand, the
recent work combined reinforcement learning with double
oracle algorithm (Lanctot et al. 2017; Wang et al. 2019) on
domains where computing (approximate) best response is
not possible.

Recently, an effort to combine domain-independent plan-
ning and DO has been made (Rytı́ř, Chrpa, and Bošanský
2019). In particular, the (best) response in DO is encoded
as a planning task in which “critical actions” are associated
with cost such that the cost reflects probability of applying
these actions before those of the adversary. Whereas the re-
sults are promising, such as approach is prone to low scal-
ability. In contrast, to this work, we propose heuristics in
order to tackle the scalability issue.

Technical Background

This section introduces the terminology we use in this paper.

Automated Planning

We assume a restricted form of Automated Planning, with
durative actions while having a static, deterministic and fully
observable environment. Solution plans amount to partially
ordered sequences of actions with known time of appli-
cation. We consider durative actions defined as in PDDL
2.1 (Fox and Long 2003).

Let V be a set of variables where each variable v ∈ V is
associated with its domain D(v). An assignment of a vari-
able v ∈ V is a pair (v, val), where its value val ∈ D(v).
Hereinafter, an assignment of a variable is also denoted as
a fact. A (partial) variable assignment p over V is a set of
assignments of individual variables from V , where vars(p)
is a set of all variables in p and p[v] represents a value of
v in p. To accommodate the notion of time, we denote that
an assignment f or a (partial) variable assignment p holds in
time t as f(t) or p(t) respectively.

An action is a tuple a =
(dur(a), pre�(a), pre��(a), pre�(a), eff�(a), eff�(a)),
where dur(a) represents duration of a’s application and
the other elements are sets of partial variable assignments.
In particular, pre� represents action precondition before
its application, pre� represents action precondition before
finishing its application, pre�� represents action precondition
for the whole time interval of its application, eff�(a) repre-
sents action effects taking place after starting its application
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and eff�(a) represents action effects taking place after fin-
ishing its application. We say that an action a is applicable
in time t if and only if pre�(a)(t), pre�(a)(t+ dur(a)) and
∀t′ ∈ [t, t+ dur(a)] : pre��(a)(t′). The result of applying a

in time t (if possible) is that eff�(a) becomes true in t and
eff�(a) becomes true in t + dur(a). It should be noted that
an assignment of a variable can change in time t only when
an action effect modifying the variable takes place in time t.
Note that we denote pre(a) = pre�(a) ∪ pre��(a) ∪ pre�(a)
and eff (a) = eff�(a) ∪ eff�(a) unless otherwise stated.

A planning task is a quadruple P = (V,A, I,G), where
V is a set of variables, A a set of actions, I a complete vari-
able assignment representing the initial state and G a partial
variable assignment representing the goal.

A plan π = {(a1, t1), . . . , (an, tn)} (for a planning task
P) is a set of couples (action,time) such that I(0) (i.e.,
the initial variable assignment is true in time 0), for each
1 ≤ i ≤ n it is the case that ai ∈ A is applicable in
ti, no actions are conflicting (i.e., no action deletes a pre-
condition of another action at the same time or no two or
more actions modify the same variable at the same time),
and G(maxni=1(ti + dur(ai))) holds (i.e., a goal is achieved
after all actions are applied).

Typically, plans are optimised for makespan, i.e., duration
of their execution. For our purpose, it is more important to
apply some actions within given dead-lines and hence we
define a cost function that assigns each action and timestamp
a non-negative cost, i.e., cost : A × T → R

+
0 . We say that

a plan π = {(a1, t1), . . . , (an, tn)} (for P) is cost-optimal
if for every plan π′ = {(a′1, t′1), . . . , (a′m, t′m)} (for P) it is
the case that

∑n
i=1 cost(ai, ti) ≤

∑m
j=1 cost(a′j , t

′
j).

Another variant of planning task definition considers,
rather than a single (hard) goal, a set of soft goals (each
goal is a set of variable assignments) such that failing to
achieve a goal is penalised. Formally, for a planning task
P = (V,A, I,G), G = {G1, . . . , Gn}, where each Gi is
associated with a cost Mi (1 ≤ i ≤ n) such that for a plan π
it is the case that cost(π) =

∑
i∈{i | Gi not achieved} Mi.

Normal-Form Games

The baseline representation for modelling strategic inter-
action is normal-form games (NFGs), see e.g. (Shoham
and Leyton-Brown 2009). A normal-form game Γ is a tu-
ple (N,S, u), where N is the finite set of players, S =
S1 × · · · × SN for finite sets of pure strategies S1, . . . , SN

of players 1, . . . , N and u = (u1, . . . , uN ) is a N -tuple of
utility functions that assign a real-valued utility of player
i for each outcome of the game defined by a strategy pro-
file – an N -tuple of pure strategies (one for each player);
ui : S → R. A mixed strategy for a player i is a prob-
ability distribution σi over the set of player’s pure strate-
gies Si. An N -tuple of mixed strategies σ = (σ1, . . . , σN )
is called mixed-strategy profile. We extend the definition of
utility functions so that a given mixed-strategy profile σ the
value ui(σ) is the expected utility of player i. We restrict on
the two player zero-sum setting where |N | = 2 and the sum
of utility values of players equals to 0 (u1 = −u2). We say
that a mixed strategy of one player σi is the best response to

the strategy of the opponent σ−i (denoted as σi = br(σ−i))
when ui(σi, σ−i) ≥ ui(σ

′
i, σ−i) for all mixed strategies σ′

i
over Si. We say that a mixed-strategy profile σ is in Nash
equilibrium (NE) if each player is playing best response to
the strategy of the opponent. NE of a zero-sum game can be
computed using the standard linear program (e.g., see eqs
(4.1)–(4.4) in (Shoham and Leyton-Brown 2009)). The ex-
pected utility of player 1 in a NE of the game is termed value
of the game.

When the number of possible strategies is exponential,
solving the linear program becomes computationally in-
tractable. One way for tackling this issue is to incrementally
build the game using the double-oracle algorithm. The al-
gorithm starts with a restricted game Γ′ = (N,S′, u), where
the sets of possible pure strategies available to players are
restricted such that players can select only from a limited
set of pure strategies (generally, S′ ⊆ S). In each iteration
of the algorithm, the restricted game Γ′ is solved using the
linear program. Next, each player computes a best pure re-
sponse from all its strategies to the strategy of the opponent
from the restricted game Γ′. These best response strategies
are added into S′ and the restricted game is expanded. The
algorithm terminates when neither of the players can add a
best response strategy that improves the expected outcome
from the restricted game. When the algorithm terminates,
NE of the restricted game is the same as in the original game
(since best response is computed over unrestricted set of all
strategies).

Planning in Zero-sum Games

In zero-sum games, any gain or loss of the agent is a loss
or gain for the competitor, respectively. Whereas the agent’s
plans maximise reward, or minimise cost, in consequence,
reward of the competitor’s plans is minimised, or their cost
is maximised. In plain words, it is of adversary’s best interest
to hinder as many agent’s goals as possible.

To illustrate the problem, let us consider two agents who
compete against each other in collecting resources. After one
agent collects a given resource, the other agent can no longer
collect it. Intuitively, a good plan for the agent is such that
the agent collects resources before its competitor.

Rytı́ř, Chrpa, and Bošanský (2019) introduced the notions
of critical and adversary actions. In a nutshell, critical ac-
tions require a fact that adversary actions can delete. We de-
note such a fact as a critical fact.

Definition 1. Let P = (V,A, I,G) be an agent’s planning
task and A′ be a set of competitor’s actions. We say that
(v, val), where v ∈ V and val ∈ D(v), is a critical fact
if and only if (v, val) ∈ I , ∃a ∈ A : (v, val) ∈ pre(a),
∀a ∈ A : (v, val) 
∈ eff(a), and ∃a′ ∈ A′ : (v, val′) ∈
eff(a′) ∧ val 
= val′.

Definition 2. Let P = (V,A, I,G) be an agent’s planning
task, A′ be a set of competitor’s actions and (v, val) be a
critical fact. We say that Ac ⊆ A, where for each ac ∈ Ac

it is the case that (v, val) ∈ pre(ac), is a set of critical
actions over (v, val). We also define a set of adversary ac-
tions A′

a ⊆ A′ over (v, val), where for each a′a ∈ A′
a it is

the case that (v, val′) ∈ eff(a′a) and val 
= val′.
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Knowing competitor’s plan gives us an information about
when adversary actions are applied. Therefore, in order to
successfully apply critical actions the agent has to plan them
before those of the competitor. In other words, adversary ac-
tions set deadlines for agent’s critical actions. For example,
the agent has to collect resources before the competitor, so
competitor’s collect actions set deadlines for agent’s collect
actions.
Definition 3. Let Ac, A′

a and (v, val) be as in Defini-
tion 2. Let π′ = {(a′1, t′1), . . . , (a′m, t′m)} be a plan of
the competitor. We define a function at(f, a, x), where f
is a fact, a is an action and x ∈ {pre, eff}, such that
at(f, a, x) = 0 iff f ∈ x�(a) ∪ x��(a), or at(f, a, x) =
dur(a) iff f ∈ x�(a) and f 
∈ x�(a) ∪ x��(a). Then,
for each ac ∈ Ac and (v, val) ∈ pre(ac), we can deter-
mine a deadline with respect to π′, denoted as dl(ac, π′) as
min{t−at((v, val), ac, pre)+at((a, val′), a′, eff) | (a′, t) ∈
π′, a′ ∈ A′

a, (v, val
′) ∈ eff(a′), val 
= val′}.

For solving zero-sum games, we can leverage the well
known Double Oracle algorithm that iteratively improves
strategies of the competing agents. In our case, strategies are
in form of sets of plans where each of the plans can be ap-
plied with a given probability, i.e., {(π1, p1), . . . , (πn, pn)}
such that

∑n
i=1 pi = 1. Improving agent’s strategy concerns

generating (best) response to the competitor’s current strat-
egy, that is, generating a plan that increases the utility of
agent’s strategy.

We consider a set of (heterogeneous) units1 such that at
least one unit has to be associated with each action. In plain
words, it means that each action has to be executed by one
or multiple units. Also, no unit can execute more than one
action at the same time.

In analogy to Rytı́ř, Chrpa, and Bošanský (2019), we as-
sociate each (soft) goal with a critical atom and we assume
that each critical action has exactly one critical fact in its pre-
condition. Hence, for a set of critical actions over the same
critical fact, it is the case that one critical action from the
set has to be applied in order to achieve the goal. We divide
critical actions into clusters such that for each critical action
it is the case that it belongs to exactly one cluster and where
each cluster is associated with a distinct critical fact.

Competitor’s strategy provides multiple deadlines for
agent’s critical actions which occur with a given probability.
In consequence while considering the previous assumption,
the probability of reaching a given soft goal equals probabil-
ity of successful application of a corresponding critical ac-
tion. We can formulate a planning task such that critical ac-
tions are associated with costs reflecting their probability to
be applied before competitor’s adversary actions. Hence the
agent’s plans are optimised for maximising their expected
utility, in other words, the likeliness of reaching the goals,
with respect to the given competitor’s strategy.
Definition 4. Let Π′ = {(π′

1, p
′
1), . . . , (π

′
n, p

′
n)} be com-

petitor’s strategy, P = (V,A, I,G) be agent’s planning task
such that G = {G1, . . . , Gk} is a set of soft goals associ-
ated with costs for failure of their achievement M1, . . . ,Mk,

1Note that in our terminology an agent can control multiple
units

Algorithm 1 Estimating the earliest application time of all
actions
Require: Planning Task P = (V,A, I,G)
Ensure: The earliest application time for all actions

1: function EARLIESTACTIONTIME(P)
2: F ← I
3: ∀f ∈ I : time(f) ← 0
4: ∀f 
∈ I : time(f) ← ∞
5: O ← ∅
6: return EarliestTime(F,O,A, time)
7: end function

8: function EARLIESTTIME(F,O,A, time)
9: repeat

10: A′ ← {a | a ∈ A, a 
∈ O, pre�(a) ∪ pre��(a) ⊆
F}

11: ∀a ∈ A′ : time(a) ←
max {time(f) | f ∈ F, f ∈ pre�(a) ∪ pre��(a)}

12: A′′ ← {a | a ∈ A′, ∀a′ ∈ A′ : time(a) ≤
time(a′)}

13: O ← O ∪A′′
14: for all f ∈ ⋃

a∈A′′ eff (a) do

15: time(f) ← min(time(f),min{time(a) +
at(f, a, eff ) | a ∈ A′′, f ∈ eff (a)})

16: F ← F ∪ {f}
17: end for
18: until A′′ = ∅
19: ∀a 
∈ O : time(a) ← ∞
20: return time
21: end function

and Ac ⊆ A be agent’s critical actions distributed in clus-
ters C1, . . . , Ck corresponding to the goals. We define a cost
function cP,Π′ : Ac × T → R+

0 that assigns non-negative
cost for critical actions in given timestamps (from T ). For
each 1 ≤ j ≤ k a ∈ Cj and t ∈ T , cP,Π′(a, t) =∑{p′iMj | dl(a, π′

i) < t}+ 0.5
∑{p′iMj | dl(a, π′

i) = t}.
For the agent’s planning task P and the competitor’s

strategy Π′, we define an agent’s response planning task
PΠ′ such that critical actions Ac are associated with the
cP,Π′ cost function. Other (non-critical) actions are of zero
cost.

Note that we consider “ties”, i.e., situations where criti-
cal actions are planned exactly on their deadlines, such that
the agent has a half chance to succeed (and similarly the
competitor has a half chance of succeeding). Also, it can be
observed that an optimal response plan accounts for the best
agent’s response on the competitor’s strategy.

Estimating the Earliest Action Application

Time

Delete relaxation has a tradition in classical planning (Hoff-
mann and Nebel 2001) as well as in temporal plan-
ning (Coles et al. 2008). Inspired by the hmax heuris-
tics (Bonet and Geffner 2001), we propose an algorithm that
estimates lower bound of time in which each action defined
in the planning task can be applied. For this purpose, we
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define a function time : A ∪ F → T assigning an action
(from A) or a fact (from F ) a timestamp (from T ) of its ear-
liest application or occurrence. The proposed algorithm is
summarised in Algorithm 1. Initially, facts (variable assign-
ments) present in the initial state are set to be true at time 0
and the other facts at time ∞. We keep track of facts (vari-
able assignments) and actions occurring at some point in the
process in sets F and O respectively. The algorithm iterates
(Lines 9–18) until the set of actions O remains unchanged
(after the iteration). Actions that have not yet been consid-
ered (are not in O), whose precondition is present in F , are
selected (the set A′). For each action from A′ its earliest ap-
plication time is determined as the latest time in which its “at
start” or “over all’ precondition is met (Line 11). Then, from
A′ we select actions with minimum application time (the set
A′′) and add them into O. For each effect f of these actions
(from A′′) we update its earliest occurrence time as mini-
mum of the current time of f and minimum time in which
f is achieved by any action from A′′ having f in its effects
(Line 15). The fact f is then added to F (if it is not yet there).
Lastly, for actions not present in O we set their earliest ap-
plication time to ∞ as they are unreachable from the initial
state (their precondition is never met).

Proposition 5. Let P = (V,A, I,G) be a planning
task. Let time(a) be determined for each a ∈ A by
running Algorithm 1. Then, for each plan of P in form
{(a1, t1), . . . , (an, tn)} it is the case that for each couple
(ai, ti) time(ai) ≤ ti holds.

Proof (Sketch). Algorithm 1 iteratively selects actions not
applied before that can be applied in the smallest time while
considering the time of first occurrence of each fact. Time of
the first occurrence of facts are determined as minimum of
the times of the selected action effects and the current time
of their first occurrence. Hence, as action effects cannot take
place before application of the action, if the first occurrence
of a fact is modified, then it cannot be earlier than the action
application time. Hence it is the case that for each action
time(a) determines a lower bound of its application time in
every valid plan.

Note that Algorithm 1 does not consider “at end” precon-
ditions in the main loop (the EarliestTime function). The rea-
son is that another action (or a sequence of actions) applied
after an action a started its application can influence the time
in which the “at end” precondition of a (i.e., pre�(a)) is sat-
isfied. Consequently, Algorithm 1 would have to be more
complicated (even in terms of computational complexity) to
reflect the issue and guarantee the lower bound of action ap-
plication time. Omitting “at end” preconditions does not vi-
olate lower bounds of action application time (although it
might underestimate the bound more). Actions whose “at
end” preconditions are unreachable could be omitted. For
the sake of clarity, we do not consider this option in Algo-
rithm 1.

The consequence of Proposition 5 is that critical actions
whose earliest time of application (determined by Algo-
rithm 1) is greater than their latest deadline (with respect
to competitor’s strategy) do not have to be considered for
generating robust plans.

Algorithm 2 Estimating application time of all actions while
considering fixed application time of a subset of actions
Require: Planning Task P = (V,A, I,G), actions A′ ⊆ A

with their application timestamps (time)
Ensure: Estimated application time for all actions

1: function ESTACTIONTIMEWACTIONS(P, A′, time)
2: F ← ∅
3: for all v ∈ ⋃

a′∈A′ vars(pre(a′) ∪ eff (a′)) do

4: val ← argmaxx{time(a′) +
at((v, x), a′, pre) | a′ ∈ A′, (v, x) ∈ pre(a′)} ∪
{time(a′) + at((v, x), a′, eff ) | a′ ∈ A′, (v, x) ∈
eff (a′))}

5: time((v, val)) ← max{time(a′) +
at((v, x), a′, pre) | a′ ∈ A′, (v, x) ∈ pre(a′)} ∪
{time(a′) + at((v, x), a′, eff ) | a′ ∈ A′, (v, x) ∈
eff (a′))}

6: F ← F ∪ {(v, val)}
7: end for
8: for all f ∈ I s.t. vars(f) ∩ vars(F ) = ∅ do
9: time(f) ← 0

10: F ← F ∪ {f}
11: end for
12: ∀f 
∈ F : time(f) ← ∞
13: O ← A′
14: return EarliestTime(F,O,A, time)
15: end function

Corollary 6. Let P = (V,A, I,G) be an agent’s response
planning task, Ac ⊆ A be agent’s critical actions and Π′ =
{(π′

1, p
′
1), . . . , (π

′
n, p

′
n)} be a strategy of the competitor. Let

A′ = A\{a | a ∈ Ac, time(a) > max1≤i≤n dl(a, π
′
i)} be a

set of actions and P ′ = (V,A′, I, G) be a response planning
task. Then, π is an optimal plan for P with respect to Π′ if
and only if π is an optimal plan for P ′ with respect to Π′.

Proof (Sketch). It immediately implies from Proposition 5
as critical actions planned after the latest possible deadline
do not have any chance to be successfully applied.

Heuristic Estimation of Critical Actions

Ordering

To improve scalability of the approach, we propose a heuris-
tics that estimates promising selection and ordering of crit-
ical actions. The structure of response planning tasks con-
cerns dividing critical actions into clusters and assuming that
no unit can apply more than one action at the same time.
Hence we focus on selecting the most promising critical ac-
tion from each cluster and order these actions according to
the units associated with them.

For this purpose, we adapt Algorithm 1 to consider ac-
tions that are known to be applied in a certain time as sum-
marised in Algorithm 2. Hence instead of starting in the ini-
tial state with initial variable assignments, the considered
actions determine the latest time and value of the variable
assignment. In particular, variables that appear in precondi-
tions or effects of the considered actions are processed such
that their latest values with corresponding timestamps are
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Algorithm 3 Selecting and ordering of critical actions
Require: Planning Task P = (V,A, I,G), a set of critical

actions Ac ∈ A with the cost function cP,Π′ divided into
clusters C = C1, . . . , Cn

Ensure: Selecting and ordering of critical actions
1: time ←EarliestActionTime(P)
2: C ←EliminateMaxCostClusters(C)
3: sa ← ∅
4: while C 
= ∅ do
5: c′ ← ∞
6: for all a ∈ ⋃n

i=1 Ci do
7: time′ ←EstActionTimeWActions(P ,sa ∪

{a}, time)
8: c ←MinCost(C, time′)
9: if c < c′ then

10: c′ ← c
11: a′ ← a
12: end if
13: end for
14: sa ← sa ∪ {a′}
15: C ←RemoveCluster(C, a′)
16: time ←EstActionTimeWActions(P ,sa,time)
17: C ←EliminateMaxCostClusters(C)
18: end while
19: DetermineOrdering(sa)
20: return sa

set as initial (Lines 3–7). Variables that do not appear in
the considered actions are set to their initial values with the
timestamp 0 (Lines 8–10). Timestamps of other (not yet con-
sidered) variable assignments are set to infinity (Line 12).
Then, the EarliestTime function from Algorithm 1 is called
to estimate application time of remaining actions.

Algorithm 3 greedily selects the most promising critical
actions and (partially) orders them with respect to given
units. For the purpose of selecting the most promising crit-
ical action in each step, we need to estimate the cost of the
response plan from the action application time estimation
(given by Algorithm 2):

MinCost(C, time) =
∑

Ci∈C

min{cP,Π′(a, (time(a)) | a ∈ Ci}

Clusters whose cost is determined as maximal, i.e., for a
cluster Ci it is the case that min{cP,Π′(a, time(a)) | a ∈
Ci} equals to Mi (the cost for failing to achieve a goal
Gi), do not have to be considered as no critical action from
that cluster can be applied before any adversary action from
competitor’s set of plans. The EliminateMaxCostClusters
function eliminates such clusters.

Initially, Algorithm 3 estimates the earliest action applica-
tion time by Algorithm 1 and eliminates clusters that yield
maximum cost. Then, until all the clusters are considered
(or eliminated) the algorithm iteratively selects a critical ac-
tion (from any remaining cluster) that yields minimum cost
(Lines 6–13). The minimum cost is determined by estimat-
ing action application time by Algorithm 2 while consider-

Algorithm 4 Simulated annealing algorithm
Require: Ordering of critical actions for all units O, initial

temperature t, constant K and temperature decrease ε.
Ensure: Optimised ordering of critical actions O.

1: while t > 0 do
2: O′ ← SAMPLENEXTORDERING(O)
3: Δ ← ORDERINGCOST(O′)−ORDERINGCOST(O)
4: if Δ < 0 then
5: O ← O′
6: else

With probability exp (−Δ/(t ∗K)) do
7: O ← O′
8: end if
9: t ← (t− ε)

10: end while
11: return O

ing the already selected critical actions and the “to be se-
lected” critical action and applying the MinCost function
(defined as above). The selected critical action is added into
the set of already selected critical actions (Line 14) and the
cluster to which the selected critical action belongs is re-
moved (since it is unnecessary to apply more than one criti-
cal action from the same cluster) (Line 15). Then, similarly
to the initial situation, action application time is estimated
(by Algorithm 2) and the maximum cost clusters are elim-
inated (Lines 16 and 17). After the loop terminates, the se-
lected critical actions are partially ordered such that ordering
constraints are provided between critical actions associated
with the same unit and the order reflects the action times-
tamps (the time function).

Algorithm 3 hence provides a selection of critical actions
and their partial ordering. A planner therefore has to con-
sider only selected critical actions while pruning the other
critical actions. On top of that, the (selected) critical actions
become applicable after the predecessing critical actions are
applied. Roughly speaking, the planner has to only “fill the
gaps” between partially ordered critical actions in order to
generate response plans. It should be noted that as Algo-
rithm 3 is greedy, hence response plans might not be optimal
even if an optimal planner is used. On the other hand, such
an approach might increase scalability as response plans
might be generated more easily.

Improving Critical Actions Ordering by Local
Search

We try to improve the initial ordering found by the greedy al-
gorithm (Algorithm 3) by using simulated annealing (Kirk-
patrick, Gelatt, and Vecchi 1983) as the local search algo-
rithm (depicted in Algorithm 4).

The SampleNextOrdering function takes an ordering O
and with probability 0.5 returns ordering O′ where two ran-
domly chosen critical actions of the same unit are swapped,
and with probability 0.5 returns ordering O′ where a ran-
domly chosen critical action is replaced by another critical
action from the same cluster.

The OrderingCost function calculates the total cost of or-
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Figure 1: A game with 4 UAVs and 6 resources. UAVs of
Player 1 are depicted by blue triangles. UAVs of Player 2
are depicted by red circles. Resources are depicted by green
squares. The numbers in the brackets are sensors that a UAV
has or are required for a resource to be collected.

dering O, given the cost function cP,Π′ . It is done by adapt-
ing Algorithm 3 such that the for loop is removed and the
action a′ (to be added into sa) is determined from the given
ordering O. After all actions from O are considered then the
MinCost function is applied to estimate the cost of O.

Incorporating Planning into the Double Oracle
Algorithm

As stated before, Double Oracle considers a restricted game
with a set of pure strategies for each player and where each
player iteratively generates (best) response to the opponent
strategy until neither player can improve its strategy. In our
case, pure strategies of agents are set of plans such that each
plan can be applied with a given probability. For finding the
(best) response to competitor’s strategy, an agent formulates
a response planning task as in Definition 4. If the response
planning task is solved optimally, i.e., the response plan has
minimum cost, then the agent obtained the best response.

However, finding an optimal plan might be too expensive.
Also, if the heuristics (as in Algorithm 3 and 4) is used, then
suboptimal response plans are generated. If the response
plan despite being suboptimal improves agent’s strategy, the
response plan is considered and the Double Oracle algorithm
continues. If none of the agents can improve its strategy, then
the Double Oracle algorithm terminates.

Experiments

We evaluated our algorithms on a two-player zero sum game
called Resource Hunting, recently specified by Rytı́ř, Chrpa,
and Bošanský (2019). The map of the game is modelled as a
graph in which the vertices represent locations and edges
connect neighbouring locations. The (soft) goals for each
player are to collect resources that are placed in some loca-
tions on the map. Each player controls a group of unmanned
aerial vehicles (UAVs). Each UAV has at most two different
sensors. Each resource requires one or two sensors for be-
ing collected. There are two types of actions the player can
take: the move action, which moves an UAV from one loca-
tion to another such that the locations are connected by an
edge, and the collect action, where one or more UAVs col-
lect a resource present in the same location as the UAVs and
where the UAVs posses the required sensors. The examples

of two types of scenarios, the “middle” and “diagonal” ones,
we use for experiments are depicted in Figure 1

We modelled the domain in PDDL, which is a well
known language for describing planning tasks (Fox and
Long 2003). We abstracted the graph by considering only lo-
cations of interest (with an UAV, or a resource), where length
of edges between these locations correspond to minimum
path length in the original graph. To reason with timelines
we can introduce specific “timeline” objects. Although we
have to know the upper bound, i.e., the latest timestamp, up-
front as in PDDL all the objects have to be specified upfront,
it can be estimated from the size of a given task. Reasoning
with timestamps can be embedded into the model by intro-
ducing “arithmetic” and “relation” predicates that represent
essential operations (e.g., adding, comparing). Enforcing or-
dering constraints for critical actions is done by introducing
special facts representing the order of each critical actions.
Critical actions are enhanced in a way that in their precon-
dition a required order fact is present and in their effects the
order fact is incremented.

The parameters for Algorithm 4 were set as t = 100,
K = 2.1 and ε = 0.002. The values of the parameters were
determined experimentally for the given domain.

As an optimal planner, for scenarios with three UAVs,
we used Fast Downward (Helmert 2006) with the potential
heuristic (Pommerening et al. 2015) optimised by the di-
versification method proposed by Seipp, Pommerening, and
Helmert (2015).

For scenarios with more than three UAVs, we used the
well known LAMA planner (Richter and Westphal 2010).
The time limit for generating a single response plan was set
to 1800 seconds while considering anytime mode. That is,
plans are being generated until either a response plan im-
proving player’s strategy is found, or the time limit expires.
Such a setting has shown to be the most promising (Rytı́ř,
Chrpa, and Bošanský 2019). We ran the experiments on
Linux with CPU Intel Xeon E5-2620 v4 2.10 GHz with
32GB RAM.

Results

At first, we have compared the classical approach (Rytı́ř,
Chrpa, and Bošanský 2019), the pruning heuristics (lever-
aging Corollary 6), the selecting and ordering heuristics
(Alg. 3) and the local search approach (Alg. 4). The compar-
ison leveraging the optimal planner has been done in scenar-
ios with 3 UAVs and 6 resources as the classical approach
as well as the pruning heuristics do not scale beyond that
size. Table 1 shows the results of the comparison. The ap-
proximation error is equal to the difference of between the
value of best response to Player 1 strategy and best response
to Player 2 strategy computed by the DO algorithm analo-
gously to Rytı́ř, Chrpa, and Bošanský (2019). In the diago-
nal case, the pruning heuristics led to the highest number of
iterations, i.e., the number of generated response plans until
it converges, while the ordering heuristics approach led to
the highest error. Whereas the latter is expectable, the for-
mer is caused by the fact that the response plans might omit
collecting some resources (all the related critical actions are
pruned out) and hence not setting the deadline for the other
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“Middle” Scenario “Diagonal” Scenario
Algorithm Error P1 Value P2 Value time (s) Iters Error P1 Value P2 Value time (s) Iters

Classical 0.0 3.1 2.9 3430 34 0.0 3.11 2.89 2590 23
PruningHeur 0.0 3.1 2.9 3077 34 0.0 3.11 2.89 3178 31
orderingHeur 1.72 2.82 3.18 1043 15 1.13 3 3 2126 13

localSearchHeur 1.12 3.21 2.79 2834 24 0.6 3.2 2.8 2929 17

Table 1: Comparison of the approaches for Scenarios with 3 UAVs and 6 resources. P1 and P2 stand for Player 1 and Player 2
respectively.

PruningHeur orderingHeur localSearchHeur
UAVs Res P1 Val P2 Val Time(s) Iters P1 Val P2 Val Time(s) Iters P1 Val P2 Val Time(s) Iters

3 6 3.08 2.92 1238 33 2.72 3.28 3838 21 2.96 3.04 4931 21
4 8 4.31 3.69 3810 14 3.43 4.57 10250 27 4.26 3.74 7958 34
5 10 1.85 8.15 2189 10 4.02 5.98 10248 30 4.48 5.52 16127 24
6 12 6.43 5.57 4209 9 5.5 6.5 13507 35 6 6 14546 16
8 16 10.08 5.92 10522 17 3 13 6616 6 9.5 6.5 18113 14

Table 2: Scalability results for the “Middle” Scenarios. Comparing pruning heuristics, order heuristics and local search heuris-
tics. “Res” denotes the number of resources. P1 and P2 stand for Player 1 and Player 2 respectively.

PruningHeur orderingHeur localSearchHeur
UAVs Res P1 Val P2 Val Time(s) Iters P1 Val P2 Val Time(s) Iters P1 Val P2 Val Time(s) Iters

3 6 3.14 2.86 1631 20 2.62 3.38 7459 21 2.96 3.04 1292 20
4 8 3.67 4.33 6235 8 5.61 2.39 3932 17 3.82 4.18 7114 24
5 10 2 8 5739 9 10 0 4562 11 5.67 4.33 12984 23
6 12 4.29 7.71 2618 9 7.8 4.2 4483 17 6.83 5.17 10122 11
8 16 8 8 9229 17 11.05 4.95 8777 16 11.5 4.5 17997 12

Table 3: Scalability results for the “Diagonal” Scenarios. Comparing pruning heuristics, order heuristics and local search heuris-
tics. “Res” denotes the number of resources. P1 and P2 stand for Player 1 and Player 2 respectively.

player. For the other player it means that it can collect the
resource at any time. However, since randomised strategies
are generated, the deadlines for resources (for both players)
are eventually set.

All the heuristic approaches with the LAMA planner
scale, in contrast to the classical approach, up to the sce-
narios with 8 UAVs and 16 resources (see Tables 2 and 3).
For scenarios with 4 and more UAVs, we were not able to
compute optimal strategies and hence we are not able to de-
termine the error. On the other hand, the scenarios are simi-
lar (albeit larger) to those with 3 UAVs and hence, as a rule
of the thumb, we believe that the optimal strategies are those
in which values of both players are close to each other. From
that perspective, the local search heuristics provides reason-
able results and in the most cases the strategies are of bet-
ter quality (closer to an equilibrium) than for the other ap-
proaches. Another aspect that contributes to worse quality
of generated strategies is the use of a suboptimal planner.
This is especially the case in the “diagonal” scenario with 5
UAVs for the ordering heuristics (Table 3), where Player 2
was not able to generate plans that collected at least some
resources before the opponent. The reason is that in the gen-
erated plans the UAVs do not move directly towards the re-
sources and hence miss the deadlines.

In summary, the results show the tradeoff between the op-
timal approaches – classical and pruning heuristics with an

optimal planner – and the sub optimal heuristic approaches
with a satisficing planner. The latter sacrifices quality of
the solutions for getting higher scalability. It also should be
noted that generating optimal strategies is feasible only for
small scenarios (up to 3 UAVs in our case).

Conclusion

Planning in zero-sum games concerns of finding plans that
maximise the reward (or minimise the cost) for accom-
plished (or failed) goals in the presence of an opponent shar-
ing the same goals such that only one of the actors can ac-
complish a given goal. Automated Planning can be incorpo-
rated into the Double Oracle algorithm such that plans are
optimised for applying critical actions before adversary can
invalidate their preconditions (Rytı́ř, Chrpa, and Bošanský
2019). In this paper, we presented three approaches, one
complete that prunes alternatives that do not lead to optimal
solutions, and two incomplete that suggest what critical ac-
tions and in which order they should be applied. Whereas the
former approach maintains optimality of generated strate-
gies, the latter addresses (to some extent) the scalability is-
sue of the complete approaches despite reducing the quality
of generated strategies.

In future, we plan to adapt our heuristic approaches to
decompose the problem into smaller ones in order to further
improve scalability of the approach.

27



Acknowledgements This research was funded by AFOSR
award FA9550-18-1-0097, by the Czech Science Founda-
tion (project no. 18-07252S) and by the OP VVV funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Cen-
ter for Informatics”.

References

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell. 129(1-2):5–33.
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