
Too Good to Throw Away:
A Powerful Reuse Strategy for Reiter’s Hitting Set Tree∗

Patrick Rodler1

1University of Klagenfurt, Austria,
patrick.rodler@aau.at

Abstract

We propose DynamicHS, a variant of Reiter’s influential HS-
Tree algorithm for computing fault explanations for defective
systems in a sound, complete and best-first way. DynamicHS
is geared to sequential diagnosis, where additional informa-
tion about the defective system is iteratively collected until
the true fault explanation is isolated. The key idea is to reuse
the search tree from one iteration and to appropriately adapt
it for the next iteration based on the acquired information.
DynamicHS preserves both the generality and all desirable
properties of HS-Tree and clearly outperforms the latter in
extensive experiments on real-world diagnosis problems.

Model-Based Diagnosis (Reiter 1987) assumes a system
(e.g., software, circuit, knowledge base, physical device)
consisting of a set components COMPS = {c1, . . . , cn} (e.g.,
lines of code, gates, axioms, physical constituents) which
is formally described by means of some monotonic logical
language. Beside any relevant general knowledge about the
system, this system description SD includes a specification
of the normal behavior (logical sentence BEH(ci)) of all in-
volved components ci of the form OK(ci) → BEH(ci). As a
result, when assuming all components to be fault-free, i.e.,
OK(COMPS) := {OK(c1), . . . , OK(cn)}, conclusions about
the normal behavior of the system can be drawn by means
of logical theorem provers. When the real system behav-
ior, ascertained through system observations and/or system
measurements (stated as logical sentences OBS and MEAS),
is inconsistent with the system behavior predicted by SD,
the normality-assumption for some of the components has
to be retracted. We call 〈SD, COMPS, OBS, MEAS〉 a diag-
nosis problem instance (DPI). A (minimal) diagnosis is an
(irreducible) set of components D ⊆ COMPS such that
SD∪OBS∪MEAS∪OK(COMPS\D)∪NOK(D) is consistent
where NOK(X) := {¬OK(ci) | ci ∈ X}. So, a diagnosis is
a set of components whose abnormality would explain the
observed incorrect system behavior.
Diagnosis Computation is often accomplished with the aid
of conflicts. A (minimal) conflict is an (irreducible) set com-

∗See (Rodler 2020) for the full paper, (Rodler 2015) for de-
tails and proofs, http://isbi.aau.at/ontodebug/evaluation for evalua-
tion data, and (Schekotihin, Rodler, and Schmid 2018) for an inter-
active knowledge-base debugging tool incorporating DynamicHS.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Diagnosis
Computation

Measurement
Point

Selection

Knowledge
Update

Measurement
Conduction

preferred
diagnoses

best measure ment point

new
measure
ment

new DPI

Diagnosis System

if diagnostic goal reached
return best diagnosis

discard
existing tree

reuse+adapt
existing tree

build
new tree

expand
adapted tree

DynamicHS

User / Oracle

new DPI

HS Tree

Figure 1: Sequential diagnosis: Phases impacted by Dy-
namicHS (violet), idea of HS-Tree/DynamicHS (red/green).

ponents C ⊆ COMPS such that assuming all of them fault-
free, i.e., OK(C), is inconsistent with the current knowledge
about the system, i.e., SD ∪ OBS ∪ MEAS ∪ OK(C) |= ⊥.
Diagnoses and conflicts are related in terms of a hitting set
property: A (minimal) diagnosis is a (minimal) hitting set
of all minimal conflicts. (X is a hitting set of a collection of
sets S iff X ⊆ ⋃

Si∈S Si and X∩Si �= ∅ for all Si ∈ S.) For
complexity and efficiency reasons, diagnosis computation is
usually focused on minimal diagnoses only.
Sequential Diagnosis. In many cases, there is a substantial
number of competing diagnoses. To isolate the actual di-
agnosis (which pinpoints the actually faulty components),
sequential diagnosis (de Kleer and Williams 1987) methods
gather additional system measurements (MEAS) to gradually
refine the set of diagnoses. They can be characterized by a
recurring execution of four phases (cf. Fig. 1): (1) computa-
tion of a set of preferred (e.g., most probable) minimal di-
agnoses, (2) selection of the best measurement point based
on these, (3) conduction of measurement actions (by some
user or oracle, e.g., an electrical engineer if a circuit is diag-
nosed), and (4) exploitation of the measurement outcome to
update the system knowledge. That is, the DPI is modified
(in terms of MEAS) between each two sequential diagnosis
iterations. The goal in sequential diagnosis is to achieve suf-
ficient diagnostic certainty (e.g., a single or highly-probable
remaining diagnosis) with highest efficiency.
Reiter’s HS-Tree (Reiter 1987) is one of the most popular
and widely used algorithms for diagnosis computation. It has
been employed in various domains such as for the debugging

The Thirteenth International Symposium
 on Combinatorial Search (SoCS 2020)

135

of software, hardware and circuits, and is still state-of-the-
art in diverse diagnosis areas. The reasons for its widespread
adoption are that (i) it is broadly applicable, since all it needs
is any sound and complete inference method for the logic
used in SD, (ii) it is sound and complete, as it computes only
and all minimal diagnoses, and (iii) it computes diagnoses
in best-first order according to a given preference criterion.

Drawing on the hitting set property that relates conflicts
with diagnoses (see above), HS-Tree builds a hitting set
tree in breadth-first (minimum-cardinality solutions first) or
uniform-cost (most-probable solutions first) way. Starting
from a queue including only n = ∅ (root), the first node
n from the queue is successively labeled: (A) If n is a non-
minimal diagnosis or a (set-equal) duplicate of some node,
then it is labeled with × (leaf node; irrelevant node; dis-
card). (B) Else, if n is not a hitting set of all minimal con-
flicts, then it is labeled by some minimal conflict C where
n∩C = ∅ (internal node). This results in |C| successor nodes
of n, each constructed as n ∪ {ci} and connected to n by an
edge labeled with ci, for all ci ∈ C. Note that the compu-
tation of each conflict requires O(|COMPS|) expensive the-
orem prover calls. (C) Else, n is labeled with � (leaf node;
minimal diagnosis; store). After the tree is completed, each
minimal diagnosis corresponds to one tree node n labeled
with �.

However, HS-Tree per se does not encompass any spe-
cific provisions for being used in a sequential way, where a
new DPI is considered in each iteration. Already Raymond
Reiter, in his seminal paper (Reiter 1987), asked:

When new diagnoses do arise as a result of system mea-
surements, can we determine these new diagnoses in a
reasonable way from the (. . .) HS-Tree already com-
puted in determining the old diagnoses?

As the first work, we shed light on this very question.
New Approach: DynamicHS. Due to the DPI update (ad-
dition of a measurement) per iteration throughout a sequen-
tial diagnosis session, HS-Tree can only be used in a “dis-
card+rebuild” fashion, where a fresh search tree is gener-
ated from scratch in, and discarded after, each iteration. As
the hitting set tree for a new DPI usually resembles the ex-
isting tree for the current DPI, this approach generally re-
quires substantial redundant computations (costly theorem
proving). Thus, we propose DynamicHS, which is based
on a “reuse+adapt” principle and can be seen as “HS-Tree
optimized for sequential diagnosis.” It targets the improve-
ment of HS-Tree by addressing the diagnosis computation
and knowledge update phases in sequential diagnosis (cf.
Fig. 1, green, red and violet colors). That is, (the knowl-
edge inherent in) the search tree built for one DPI is reused
and adapted for the new, updated DPI. As a result, one and
the same search tree is used and gradually refined through-
out the entire sequential diagnosis session. The key changes
to HS-Tree are: storage of duplicate nodes and non-minimal
diagnoses; pruning and relabeling (some) nodes at each it-
eration; replacement of (some) pruned nodes by adequate
stored duplicates; regular freshness-checks of node-labeling
conflicts.
Related Works. Literature covers a wide variety of diag-

Figure 2: Experiment results.

nosis computation algorithms with different properties (e.g.,
complete vs. incomplete, best-first vs. any-first, etc.), moti-
vated by different diagnosis problems, domains and require-
ments. As theoretical and empirical analyses attest, the best
choice of algorithm depends on the particular problem (do-
main and requirements). Moreover, when new algorithms
achieve performance improvements compared to existing
ones, this often comes at the cost of losing desirable proper-
ties (e.g., completeness or the best-first property). Hence, it
is particularly noteworthy that DynamicHS aims to improve
HS-Tree while preserving all its favorable properties.
Evaluation. We conducted extensive experiments on real-
world cases from the knowledge-base (KB) debugging do-
main, where HS-Tree is the state-of-the-art diagnosis com-
putation method. DynamicHS was compared to HS-Tree by
running 20 sequential diagnosis sessions (stop criterion: sin-
gle diagnosis remaining), each with a different random tar-
get solution, for each of the two algorithms, for each diagno-
sis case (inconsistent Description Logic KB), for each mea-
surement point selection strategy (cf. Fig. 1, phase 2) among
the three superior ones (MPS,ENT,SPL) in the field (Rodler
and Schmid 2018), and for each number of preferred diag-
noses in {2, 4, 6, 10, 20, 30} that had to be computed in each
sequential iteration (cf. Fig. 1, phase 1). The findings are:
(i) In all scenarios, DynamicHS led to significant average
time savings (of up to 70 %) compared to HS-Tree (bars in
Fig. 2). (ii) DynamicHS outperformed HS-Tree in 98.75 %
of all single sessions (blue line in Fig. 2). (iii) DynamicHS
has exactly the same desirable properties—soundness, com-
pleteness, best-first property, general applicability—as HS-
Tree (and exhibited similar space requirements in our tests).
Acknowledgments. This work was supported by the Aus-
trian Science Fund (FWF), contract P-32445-N38.

References
de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple faults.
Artif. Intell. 32(1):97–130.
Reiter, R. 1987. A Theory of Diagnosis from First Principles. Artif.
Intell. 32(1):57–95.
Rodler, P., and Schmid, W. 2018. On the impact and proper use of
heuristics in test-driven ontology debugging. In RuleML+RR 2018.
Rodler, P. 2015. Interactive Debugging of Knowledge Bases. Ph.D.
Dissertation, Univ. of Klagenfurt.
Rodler, P. 2020. Reuse, Reduce and Recycle: Optimizing Reiter’s
HS-Tree For Sequential Diagnosis. In ECAI 2020. (to appear).
Schekotihin, K.; Rodler, P.; and Schmid, W. 2018. OntoDebug:
Interactive ontology debugging plug-in for Protégé. In FoIKS 2018.

136

