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Abstract

Cooperation among vehicles is a promising concept for path-
planning in transportation services. For instance, vehicle pla-
tooning on highways decreases fuel consumption because it
reduces the air resistance, and this makes us construct paths
sharing sub-paths in platooning. We study a model that per-
mits heterogeneous cooperation and discuss a path-planning
problem under the assumption that heterogeneous coopera-
tion benefits the objective function. In this paper, we provide
experimental evaluations and simple heuristic solvers to ob-
serve the behaviors of the optimization problem.

Introduction

We focus on path-planning problems for multiple vehicles,
where vehicles cooperate with others by sharing sub-paths
(i.e., sub-routes). The problem with one vehicle type, named
vehicle platooning problems (VPPs), has been studied in the
transportation domain (Larsson, Sennton, and Larson 2015).
In previous work, the generalized problem of VPPs on het-
erogeneous vehicle types have been studied (Otaki et al.
2019b; 2019a) and named cooperative path planning prob-
lems (CPP). The heterogeneity can reflect different discount
(or increment) effects. They reported theoretical and compu-
tational aspects of the problem using integer programming
(IP) solvers. However, some metrics of experiments with IP
solvers (e.g., gaps and computational times) were not pre-
cisely evaluated in the previous studies. Also, only small
synthetic graphs were used in the experiments. We here ex-
perimentally evaluate the existing IP models using larger in-
stances. To discuss the computational hardness of the prob-
lem, we also compare the results using an IP solver with
those obtained by simple heuristic solvers.

The CPP Problem We follow the notations used in (Otaki
et al. 2019a). Let T be a set of vehicle types and C ⊆ T ×T
be a set of binary cooperation relation. For (T1, T2) ∈ C, we
say that vehicles of type T1 are parent and those of type T2

are children of the cooperation. Parameters η(T1T2) are given
to represent the benefit obtained from (T1, T2) cooperation
for (T1, T2) ∈ C. In addition, for an undirected weighted
graph G = (V,E,w), sets R(T ) = {(o(T )

t , d
(T )
t ) ∈ V × V |
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t ∈ [NT ]} of travel requests are given for type T ∈ T ,
where NT is the number of type T vehicles and [NT ] =
{1, . . . , NT }. The CPP problem is to simultaneously com-
pute a set P of paths from o

(T )
t to d

(T )
t for each vehicle

t ∈ [NT ] of type T ∈ T that minimizes the sum of travel
cost C(P) =

∑
T∈T ,e∈E w(e)g(T )(e), where

g(T )(e) := gp(T ) +
∑

T ′∈T
if (T,T ′)∈C

gc(TT ′), (1)

gp(T )(e) := #(Type T parent at e),

gc(TT ′)(e) := η(TT ′) ·#(Type T ′ child of (T, T ′) at e).

The value g(T )(e) represents the discounted effect of ve-
hicles traveling along with e on G, where particularly the
term gc(TT ′) reflects the effect by cooperation with η(TT ′);
if η(TT ′) < 1, the effect benefits to reduce the objective
function (as the fuel consumption is reduced in VPPs). If
η(TT ′) = 1, the cooperation can be interpreted as just
following shortest paths. Cooperation-wise capacity con-
straints (the max. number of vehicles taking (T, T ′) in
Eq.(1)) also imposed (see Def. 3 at (Otaki et al. 2019a)).
The IP formulation to solve the problem above is provided
in Appendix A. at (Otaki et al. 2019a).

Numerical Experiments

We extensively evaluate the IP formulation and simple
heuristics based on shortest paths and graph matching on
synthetic and real graphs obtained from OpenStreetMap.
Experiments are conducted on a workstation with an Intel
Xeon W-2145 CPU at 3.70GHz with 64GB of memory and
Gurobi 8.1. Graphs K-d represent graphs obtained from Ky-
oto, Japan and those of R-d means synthetic graphs gener-
ated by (van de Hoef, Johansson, and Dimarogonas 2015)1.
We only report results using clustered requests, which are
generated as traveling from left to right on G.

Evaluation of IP formulation We evaluate CPP for sin-
gle vehicle type, which is equivalent to capacitated VPP, in

1The center of map K-d is (lat, long)=(35.026244, 135.780877)
and the value d is the distance to extract graphs. For synthetic
graphs, d is set to be the number of vertices in G.
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Table 1: The mean computational times on CPP with one
vehicle type and η(LL) = 0.7 on K-500.

NT Capacity Q = 1 2 4

10 12.2 (11.1) 7.9 (5.0) 3.8 (3.8)
15 103.3 (170.1) 71.6 (133.4) 63.1 (135.5)

Figure 1: Results on clustered requests against MIPGap θ.

terms of the capacity constraints with parameter Q. Note that
the capacity has not been discussed for VPP by Larsson et
al. (Larsson, Sennton, and Larson 2015). We measure the
mean computational time against Q and its standard devia-
tion. Table 1 shows results on K-500 with NT ∈ {10, 15}
and Q ∈ {1, 2, 4} using 10 randomly generated clustered
requests. The results indicate that small C values require
more computational time. We conjecture that the difficulty
is because they require to form a group of vehicles to min-
imize Eq. (1). Note that heterogeneous instances require
more computational times (e.g., (Otaki et al. 2019b)). For
example, we confirmed that the solver cannot find any solu-
tions within 15 minutes if d = 1000, Q = 4, and NT = 20.

The branch-and-bound algorithm returns a current solu-
tion when a relative difference between the computed upper-
bound and lower-bound is less than MIPGap θ. Therefore
the parameter affects the computation time and quality of
returned solutions. To evaluate the effect of θ, we use the IP
formulation built from the selected requests on K-500. We
set NL = NS = 10, Q(LL) = 3, Q(LS) = 3 and Q(SS) = 2
and vary θ ∈ {10−4, 10−3, 10−2, 10−1, 100}2. We then ob-
serve (1) objective values, (2) obtained gaps by Gurobi, and
(3) computational times. Figure 1 illustrates the average val-
ues of the three on random 10 instances. We can confirm that
for a relatively large gap (e.g., 10−1 = 10% or 10−2 = 1%)
the modern IP solver succeeds to find solutions efficiently
(e.g., less than 10 seconds for clustered requests are enough
to find solutions). We then conjecture that IP solvers with a
large gap parameter θ can be used to find feasible solutions.

Evaluation of heuristic solvers We develop two simple
heuristic solvers: Greedy and b-Matching. In the heuristics,
we use the difference between Eq. (1) and the cost when fol-
lowing shortest paths as the score of benefit of taking coop-
eration to divide the problem into (disjoint) sub-problems.
The Greedy heuristic makes the group of vehicles in a
greedy manner of the score. The b-Matching heuristic se-
lects groups using b-matching algorithms. We test them us-

2Note that Q(T1T2) is the capacity of cooperation (T1, T2) ∈ C.

Table 2: IP solvers and heuristics are compared with respect
to times (T). For heuristics, gap (G) means the ratio of scores
based on the IP solver.

Label IP solver Heuristics
Greedy b-Matching

T [s] (G) T [ms] (G) T [ms]

K-500 106 +1.38 5.78 +1.14 62.57
K-750 489 +1.38 8.16 +1.14 79.91
R-300 534 +1.47 3.49 +1.13 64.25

ing clustered requests on three graphs (K-500, K-750, and R-
300), wherein Gurobi could find solutions up to 10 minutes
with θ = 10−4. Table 2 summarizes the results. Note that the
results of the IP solver include instances for which the IP
solver returns feasible solutions because it cannot find op-
timal ones. We confirmed that simple heuristics constantly
construct the solution whose objective values are roughly
15-25% larger than the IP solver. These results are compara-
ble to the setting of MIPGap ∈ [0.15, 0.25]3. By comparing
results, simple heuristics are faster than Gurobi with large θ.

Conclusions and Future work

We studied the cooperation among heterogeneous vehicle
types in path-planning and experimentally evaluate the dif-
ficulty of the problem in various aspects. Although the CPP
problem is an abstract problem class from the viewpoint of
mobility-as-a-service (MaaS) applications, this experimen-
tal study opens a new door on models that support cooperat-
ing heterogeneous vehicles with the travel costs discounted.

Our future work will include the developments of so-
phisticated solvers (e.g., anytime algorithms, taking time-
synchronization into account) and efficient solvers that can
find optimal solutions in large-scale problems.
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3This parameter cannot be directly compared to the resulted
gaps since MIPGap is the gap between the upper and lower bounds.
However, the value θ is often related to the obtained gap as we see
in Fig. 1 and it is applicable to observe the problem.
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