
A Simple and Fast Bi-Objective Search Algorithm (Extended Abstract)∗

Carlos Hernández Ulloa,† William Yeoh,‡ Jorge A. Baier,∗, §
Han Zhang,� Luis Suazo,† Sven Koenig�

† Departamento de Ciencias de la Ingenierı́a, Universidad Andrés Bello, Chile
‡ Department of Computer Science and Engineering, Washington University in St. Louis, USA
∗ Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile, Chile

§ Millennium Institute for Foundational Research on Data, Chile
� Department of Computer Science, University of Southern California, USA

Abstract
Many interesting search problems can be formulated as bi-
objective search problems, that is, search problems where
two kinds of costs have to be minimized. We describe our
new Bi-Objective A* (BOA*) algorithm and show that it can
run an order of magnitude (or more) faster than state-of-the-
art bi-objective search algorithms. See our longer ICAPS pa-
per (Hernández et al. 2020) for details.

Introduction
Researchers have extended A* to solve bi-objective shortest
path problems where one wants to find the set of Pareto-
optimal paths from the start state to the goal state. Two such
state-of-the-art A* extensions are NAMOA* (Mandow and
Pérez-de-la-Cruz 2010) and its improvement NAMOA*dr
(Pulido, Mandow, and Pérez-de-la-Cruz 2015). Upon gen-
erating any node, these search algorithms have to check if
the newly found path to some state s is dominated by a pre-
viously found path to s and, if so, discard the newly found
path. They also need to check whether a previously found
path to s is dominated by the newly found path to s and, if
so, discard the previously found path. In this context, path p
dominates path p′ iff each kind of path cost of p is no larger
than the corresponding kind of path cost of p′ and at least
one kind of path cost of p is smaller than the corresponding
kind of path cost of p′. The set of Pareto-optimal paths is the
set of paths that are not dominated by any path.

In this paper, we introduce our Bi-Objective A* (BOA*)
algorithm that prunes dominated paths more efficiently than
NAMOA* and NAMOA*dr by exploiting that the heuristic
function is consistent. It performs all dominance checks in
constant time.

Our Bi-Objective A* (BOA*) Algorithm
A bi-objective search graph is a tuple (S,E, c), where S is
the finite set of states, E ⊆ S × S is the finite set of edges,

∗The research was partially supported by the National Science
Foundation under grant numbers 1409987, 1724392, 1812619,
1817189, 1837779, 1838364, and 1935712 as well as by the De-
partment of Computer Science at PUC Chile under a FondDCC
grant.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and c is a cost function that associates a pair of non-negative
real costs with each edge. Succ(s) = {t ∈ S | (s, t) ∈ E)
denotes the successors of state s. A bi-objective search prob-
lem instance is a tuple P = (S,E, c, sstart , sgoal), where
(S,E, c) is a search graph, sstart ∈ S is the start state, and
sgoal ∈ S is the goal state. A path from s1 to sn is a se-
quence of states s1, s2, . . . , sn such that (si, si+1) ∈ E for
all i ∈ {1, . . . , n − 1}. A path is a solution for instance
P iff it is a path from sstart to sgoal . If p = (p1, p2) and
q = (q1, q2), p ≺ q denotes that (p1 < q1 and p2 ≤ q2)
or (p1 = q1 and p2 < q2). In this case, we say that p

dominates q. c(π) =
∑n−1

i=1 c(si, si+1) is the cost of path
π = s1, . . . , sn. π ≺ π′ for two paths π and π′ denotes that
c(π) ≺ c(π′). In this case, we say that π dominates π′.

Given an instance P , a Pareto-optimal solution π for P
is a solution for P such that π′ �≺ π for all solutions π′
for P , that is, a Pareto-optimal solution is not dominated by
any solution. The Pareto-optimal solution set is the set of all
Pareto-optimal solutions. We are interested in finding a cost-
unique Pareto-optimal solution set, which is any maximal
subset of the Pareto-optimal solution set such that any two
solutions in the subset do not have the same cost.

The Open list of BOA* contains nodes. Each node x has
a state s(x), a g-value g(x), an f -value f(x), and a parent
parent(x) and corresponds to a path to s(x) of cost g(x).

Algorithm 1 shows the pseudocode of BOA*. It takes as
input a bi-objective search problem and a consistent heuris-
tic function and computes a cost-unique Pareto-optimal so-
lution set by maintaining a gmin

2 -value for every state. In
each iteration, it extracts a node x with g-value g(x) =
(g1, g2) from the Open list with the lexicographically small-
est f -value f(x) = (f1, f2) of all nodes in the Open list
(Line 9). It does not expand the node if its g2-value is at least
gmin
2 (s(x)) or its f2-value is at least gmin

2 (sgoal) (Line 10).
Otherwise, it updates gmin

2 (s(x)) (Line 11) and expands the
node. If s(x) is the goal state, then BOA* has found an un-
dominated solution and adds node x to the solution set sols
(Lines 12-14). Otherwise, it calculates the child nodes of
node x (Lines 15-21). It does not add a child node y to the
Open list if its g2-value is at least gmin

2 (s(y)) or its f2-value
is at least gmin

2 (sgoal) (Line 20). Otherwise, it generates the
child node by adding it to the Open list (Line 21). It termi-
nates when the Open list is empty and returns the solution

The Thirteenth International Symposium
 on Combinatorial Search (SoCS 2020)

125

Algorithm 1: Bi-Objective A* (BOA*)
Input : A search problem (S,E, c, sstart , sgoal) and a consistent

heuristic function h
Output: A cost-unique Pareto-optimal solution set

1 sols ← ∅
2 for each s ∈ S do gmin

2 (s) ← ∞
3 x ← new node with s(x) = sstart
4 g(x) ← (0, 0)
5 parent(x) ← null
6 f(x) ← (h1(sstart), h2(sstart))
7 Initialize Open and add x to it
8 while Open �= ∅ do
9 Remove a node x from Open with the lexicographically smallest

f -value of all nodes in Open

10 if g2(x) ≥ gmin
2 (s(x)) ∨ f2(x) ≥ gmin

2 (sgoal) then continue
11 gmin

2 (s(x)) ← g2(x)
12 if s(x) = sgoal then
13 Add x to sols
14 continue
15 for each t ∈ Succ(s(x)) do
16 y ← new node with s(y) = t
17 g(y) ← g(x) + c(s(x), t)
18 parent(y) ← x
19 f(y) ← g(y) + h(t)

20 if g2(y) ≥ gmin
2 (t) ∨ f2(y) ≥ gmin

2 (sgoal) then continue
21 Add y to Open

22 return sols

set (Line 22).

Experimental Results
We compare BOA*, NAMOA*dr, BOA* with standard
linear-time dominance checking (sBOA*), Bi-Objective Di-
jkstra (BDijkstra), and Bidirectional Bi-Objective Dijkstra
(BBDijkstra) (Sedeño-Noda and Colebrook 2019). We use
the C implementations provided by the authors for BBDi-
jkstra and BDijkstra. We implement BOA*, sBOA*, and
NAMOA*dr from scratch in C using a standard binary heap
for the Open list. We run all experiments on a 2.20GHz In-
tel(R) Xeon(R) CPU Linux machine with 128GB of RAM.
We use road maps from the 9th DIMACS Implementation
Challenge: Shortest Path.1 The cost components represent
travel distances (c1) and times (c2). The h-values are the ex-
act travel distances and times to the goal state, computed
with Dijkstra’s algorithm. It takes 75 milliseconds to com-
pute the h-values for the largest road map. The reported run-
times include this computation. All algorithms obtain the
same number of solutions for all instances used in the exper-
iments, implying that no two Pareto-optimal solutions have
the same cost.

We compare the runtimes of the five algorithms on 50
instances each of 3 USA road maps used by Machuca and
Mandow (2012). Table 1 shows the name of the road map,
the number of states and edges of the map, and the average
number of Pareto-optimal solutions. For each algorithm, it
shows the number of instances solved within a runtime limit
of 3,600 seconds as well as the average, maximum, and min-
imum runtimes (in seconds). We observe that NAMOA*dr
can be an order-of-magnitude faster than sBOA*. BOA* can
be several times faster than NAMOA*dr, especially on in-
stances with large numbers of Pareto-optimal solutions. For

1http://users.diag.uniroma1.it/challenge9/download.shtml

New York City (NY)
264,346 states, 730,100 edges, |sols| = 199 on average

Solved Average Max Min
sBOA* 50/50 9.75 148.65 0.10
NAMOA*dr 50/50 0.65 4.99 0.11
BOA* 50/50 0.32 1.95 0.11
BBDijkstra 50/50 1.94 23.43 0.26
BDijkstra 50/50 2.55 21.16 0.17

Colorado (COL)
435,666 states, 1,042,400 edges, |sols| = 427 on average

Solved Average Max Min
sBOA* 50/50 38.88 1,141.78 0.17
NAMOA*dr 50/50 2.16 57.40 0.17
BOA* 50/50 0.79 15.26 0.17
BBDijkstra 50/50 4.79 83.07 0.41
BDijkstra 50/50 7.78 135.24 0.29

Florida (FL)
1,070,376 states, 2,712,798 edges, |sols| = 739 on average

Solved Average Max Min
sBOA* 46/50 349.64 1,238.25 0.43
NAMOA*dr 50/50 19.66 329.79 0.43
BOA* 50/50 4.59 60.54 0.43
BBDijkstra 50/50 91.36 1,772.48 1.11
BDijkstra 50/50 158.33 2,722.69 0.77

Table 1: Runtime (in seconds) on 50 instances of the speci-
fied road map. When an algorithm times out after 3,600 sec-
onds, we use 3,600 seconds in the calculation of the average.

example, BOA* is 4.3 times faster than NAMOA*dr on FL
(with 739 Pareto-optimal solutions on average), while BOA*
is only 2.03 times faster than NAMOA*dr on NY (with 199
Pareto-optimal solutions on average). BOA* can also be an
order-of-magnitude faster than BBDijkstra and BDijkstra.

Conclusions
We have presented Bi-Objective A* (BOA*), a simple and
fast best-first bi-objective search algorithm. BOA* improves
the efficiency of the dominance checks substantially, which
is key to improving the efficiency of the search. The domi-
nance checks of BOA* require only constant time, while the
ones of existing bi- and multi-objective search algorithms
require linear time. Consequently, BOA* can run faster than
state-of-the-art algorithms.

References
Hernández, C.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo, L.;
and Koenig, S. 2020. A simple and fast bi-objective search
algorithm. In ICAPS.
Machuca, E., and Mandow, L. 2012. Multiobjective heuris-
tic search in road maps. Expert Systems with Applications
39(7):6435–6445.
Mandow, L., and Pérez-de-la-Cruz, J. 2010. Multiobjective
A* search with consistent heuristics. Journal of the ACM
57(5):27:1–27:25.
Pulido, F.-J.; Mandow, L.; and Pérez-de-la-Cruz, J.-L. 2015.
Dimensionality reduction in multiobjective shortest path
search. Computers & Operations Research 64:60–70.
Sedeño-Noda, A., and Colebrook, M. 2019. A biobjective Di-
jkstra algorithm. European Journal of Operational Research
276(1):106–118.

126

