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An instance P of the Precedence Constrained Generalized
Traveling Salesman Problem (PCGTSP) is defined by a di-
rected graph G = (V,A) where V := {1, . . . , n} is a set
of vertices, A ⊆ {(i, j) : i, j ∈ V, i �= j} is a set of arcs,
each of which has a cost cij ≥ 0. We let {V1, . . . , Vm} be
a partition of V where Vp, p ∈ M , is called a group, and
M := {1, . . . ,m}. We define the precedence constraints by
an acyclic and transitive digraph G′ = (M,Π) so that if
(p, q) ∈ Π then group p must precede group q in a feasible
tour. PCGTSP asks to find a cheapest closed tour that visits
exactly one vertex per group and fulfills the precedence con-
straints. The tour must start and end in V1. The precedence
constraints apply only to the path without the last arc ending
in V1, but the cost of it is included.

PCGTSP combines features from the Sequential Ordering
Problem (SOP) and the Generalized TSP (GTSP). Prece-
dence constraints in SOP have been handled mostly by
MILP models together with separation algorithms (As-
cheuer, Jünger, and Reinelt 2000), (Balas, Fischetti, and Pul-
leyblank 1995). Some exact GTSP algorithms are based on
branch-and-bound for the symmetric and asymmetric cases,
utilizing integer relaxation or Lagrangian relaxation (Fis-
chetti, Gonsalez, and Toth 1997), (Laporte, Mercure, and
Nobert 1987), (Noon and Bean 1991). GTSP can be re-
duced to ATSP, to produce either optimal solutions (Noon
and Bean 1993) or lower bounds (Noon and Bean 1991).

PCGTSP has recently attracted interest but is still largely
unexplored. It arises, for example, in industrial processes
where tasks which can be performed in different ways are
to be sequenced with respect to some order to ensure the in-
tegrity of the process (Söderberg et al. 2017). Heuristics with
a focus on industrial applications, namely coordinate mea-
surement machines, may be found in (Salman et al. 2016).
The present summary outlines the contributions of (Salman,
Ekstedt, and Damaschke 2020) and discusses future plans.

We branch in such a way that we choose the group to
visit next. Thus each tree node represents a partial group
sequence σ = (Vp1

, . . . , Vpk
) with p1 = 1. Let P(σ) be

the subproblem there – PCGTSP where any tour must begin
with σ. By dynamic programming, the cheapest paths be-
tween any vertices in V1 and Vpk

through σ are computed.
Accordingly we define a reduced PCGTSP instance P0(σ)
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on the subgraph of G without the inner groups of σ.
Let Cmin(P) be the cost of an optimal solution, and

cmin(σ) the cost of a shortest path through σ. It is easy to
prove Cmin(P(σ)) ≥ Cmin(P0(σ))+cmin(σ), which yields
a lower bound for P(σ). For the reason for this approach, see
the history utilization below.

We choose DFS as a branching strategy as this will rapidly
deliver new upper bounds and is not memory intensive.
When selecting the next branch at the same depth, we pick
the group Vp with the largest successor set {q : (p, q) ∈ Π}
for obvious intuitive reasons. When a sequence with m
groups is reached, the vertex choice is optimized by dynamic
programming, and a special 3-opt heuristic (Gambardella
and Dorigo 2000) is applied. The current best upper bound
is updated when a lower value is obtained.

Similarly to (Shobaki and Jamal 2015) we use a sim-
ple bounding method where the precedence constraints are
relaxed. The GTSP instance derived from a PCGTSP in-
stance P by ignoring the precedence constraints is called the
weak version of P . Sophisticated steps for eliminating edges
(Escudero, Guignard, and Malik 1994) (Ascheuer, Jünger,
and Reinelt 2000) were discarded since initial experiments
showed only marginal improvements.

To compute bounds for the remaining GTSP we look into
two relaxations that have been used for ATSP (Williamson
1992): the Minumum Spanning Arborescence Problem
(MSAP) and the Assignment Problem (AP). Since their
generalized versions are NP-hard (Myung, Lee, and Tcha
1995), (Gutin and Yeo 2003), we have tried two different
approaches: transform the GTSP to an equivalent ATSP in-
stance NB(P) by the Noon-Bean transformation (Noon and
Bean 1993), or to another ATSP instance NC(P) that relaxes
the constraint to visit only one vertex per group. Relaxing
the outdegree constraints in NB(P) or NC(P) results in an
MSAP instance. To further tighten the bound we also add the
cheapest incoming arc to the root, to get a 1-arborescence.
By relaxing the subtour elimination constraints in NC(P)
one obtains a Cycle Cover problem, which can be turned
into an AP by a standard construction.

Our main idea is to extend parts of the history utiliza-
tion technique from (Shobaki and Jamal 2015) to PCGTSP.
It is applicable because identical bounding subproblems in
the search tree are likely to appear, and the “principle of op-
timality” holds (sub-tours of optimal tours are optimal). We
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suitably define equivalence between tree nodes, and if it is
not possible to prune a tree node based on already explored
equivalent nodes we forgo solving the bounding subproblem
and reuse information from an already explored tree node,
using P0(σ). There, the lower bound was separated in two
parts, and the suffix part is equal for equivalent tree nodes.

The algorithm was run on 23 synthetic instances and 5
cases of coordinate measuring machines used for geome-
try assurance within the automotive industry. The synthetic
instances were created from a library of SOP instances by
duplicating vertices and edge costs, thus creating groups
of identical vertices, and random perturbation to the costs.
They have 13–70 groups of 1–9 vertices. The industrial
cases have 12–173 groups. The AP lower bounds are almost
consistently stronger than those of MSAP. This holds both
for the end results and for subproblem nodes. Even though
not all parts of the history utilization technique could be ex-
tended, we were able to solve the instances corresponding to
the SOP instances solved in (Papapanagiotoua et al. 2015),
indicating that the most important properties of this pruning
technique carry over. For most unsolved instances we got
solutions within 10% of optimum.

While pruning with history utilization is successful, we
seem to produce very weak lower bounds, partly due to the
DFS strategy (which only takes the bound at the root as the
global lower bound) but mainly due to omission of prece-
dence constraints. To incorporating them, we are consider-
ing relaxations using AP where costs are based on short valid
paths rather than single arcs. These paths may go through
spurious vertices making the lower bounds too small, but
this might be avoided by modified branching rules.

One could also keep the precedence constraints in an ILP
model. Tests in (Salman et al. 2016) indicate that solvers like
CPLEX take far too long time for this and produce bounds
which are not significantly stronger, indicating that some
cutting plane augmentation is needed. However, this may be
an issue with the used mixed ILP model. Another approach
is to develop precedence constraint cuts for the AP or MSAP
as in (Escudero, Guignard, and Malik 1994).

A better bound at the root is especially important. One
could employ Lagrangian relaxation on the vertex choice
or subtour elimination constraints. Some nested subgradi-
ent method which updates the multipliers for the dualized
constraints could then strengthen the bound. One could also
solve NC(P) or NB(P) by a TSP solver.

Other plans are to consider multi-agent versions and ap-
plications to item collection tours in warehouses.
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