
f -Cardinal Conflicts in Conflict-Based Search

Eli Boyarski,1 Pierre Le Bodic,2 Daniel Harabor,2 Peter J. Stuckey,2 Ariel Felner1
1Ben-Gurion University of the Negev 2Monash Univesity

boyarske@post.bgu.ac.il, {pierre.lebodic, peter.stuckey, daniel.harabor}@monash.edu, felner@bgu.ac.il

1 Introduction and Overview
Multi-agent Path Finding (MAPF) is a coordination problem
where the aim is to find a set of collision-free paths for a team
of agents, each from its start location to its goal.

Conflict-based Search (CBS) (Sharon et al. 2015) is a two-
level optimal MAPF solver which is popular and successful.
The low level finds optimal paths for the individual agents. If
the paths include collisions, the high level, via a split action,
imposes constraints on the agents to avoid these collisions.
The search space of CBS is therefore a binary Conflict Tree
(CT) which the algorithm explores in best-first order. CBS is
complete, optimal and often highly performant; e.g., recent
variants can solve MAPF problems with > 100 agents. A
detailed description of CBS and other algorithms appear in
the survey by Felner et al. (2017).

Boyarski et al. (2015) showed that choosing the right con-
flict to resolve can greatly speed up the search by decreas-
ing the size of the high-level search tree (CT). They recom-
mended choosing cardinal conflicts, if any are found in the
CT node, otherwise semi-cardinal conflicts should be chosen,
and finally non-cardinal conflicts. When cardinal conflicts are
resolved, the cost of the two child nodes that are generated is
higher than the cost of their parent.

Later, Felner et al. (2018) and Li et al. (2019) added heuris-
tics to CBS. Nodes of the CT are now prioritized based on the
sum f of their cost g and their heuristic value h. Adding such
heuristics adds more dimensions to the above prioritization.
Often when a cardinal conflict is resolved, while the g-value
(cost) of the resulting child nodes increases by 1 relative to
their parent, their heuristic estimate h decreases by 1 at the
same time. This diminishes the effectiveness of preferring
cardinal conflicts in a CT node.

We propose an enhanced categorization function, based
on the Δf and the Δg for the child nodes which are gen-
erated when the conflict is resolved. In particular, we add
the notion of f -cardinal conflicts. Resolving f -cardinal con-
flicts generates child nodes with an increased f -value relative
to their parent. Next, we propose two methods for identi-
fying f -cardinal conflicts and provide a new prioritization
scheme where f -cardinal conflicts should be resolved first in
a CT node, if they are found, then any g-cardinal nodes, and
then non-cardinal nodes. Finally, we demonstrate on stan-
dard benchmarks that this scheme significantly increases the

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

�������	A �������	Y

neither at goal

��
��
��
��
�

��
��
��
��
�

��
��
��
��
� at goal

not at goal
��

��
��

��
�

��
��

��
��

�

��
��

��
��

�

�������	B �������	X �������	Z

Figure 1: A conflict graph for five agents

effectiveness of modern CBS.

2 Different Types of Conflicts
A CT node N is defined by a set of constraints
N.constraints on the agents of the problem. It determines
for each agent separately a shortest path that does not violate
any constraint in N.constraints. The node also records its
g-value (the sum of the cost of the paths for each agent) as
N.g. When using a heuristic function, N also stores its h-
and f -values. In this paper we assume the h-value is given
by the size of the minimum vertex cover (MVC) of the graph
of the (g-)cardinal conflicts for the node (Felner et al. 2018).

We expand the conflict types from ICBS (Boyarski et al.
2015) and distinguish between five types of conflicts: given
a conflict C in CT node N , and N1 and N2 the potential
child CT nodes that would be generated if N were expanded
according to C, we say C is f -cardinal if both N1.f >
N.f and N2.f > N.f , semi-f -cardinal if both N1.f >
N.f = N2.f or N2.f > N.f = N1.f , g-cardinal if both
N1.g > N.g and N2.g > N.g, semi-g-cardinal if either
N1.g > N.g = N2.g or N2.g > N.g = N1.g, and non-
cardinal if N1.g = N2.g = N.g.

We note that, depending on Δh, a g-cardinal conflict may
or may not be also an f -cardinal conflict. Similarly, for semi-
g-cardinal conflicts and semi-f -cardinal conflicts.

Figure 1 shows a g-cardinal conflict graph of 5 agents,
A,B,X, Y , and Z in a CT node N . Agent Z is planned to
pass through agent Y ’s goal location after Y is planned to
reach it. The conflict between Y and X , however, occurs
before Y is planned to reach its goal. The size of the MVC
of the g-cardinal conflict graph, and hence the h-value, is 2.
We next examine different conflicts on this graph.

The conflict between agents A and B is g-cardinal. Re-
solving it will generate child nodes with Δg = 1 and the size
of the MVC will decrease by 1 (unless new cardinal conflicts

The Thirteenth International Symposium 
 on Combinatorial Search (SoCS 2020)

123



are caused by the new paths of A and B). Thus, based only
on information from this conflict graph, the child nodes will
have Δh = −1 and Δf = 0.

The conflict between agents X and Y is semi-f -cardinal.
If it is resolved in CT node N , the child node that constrains
agent X (to avoid the conflict between X and Y ) will still
have a cardinal conflict graph with a MVC of size (at least)
2, yielding Δh = 0 and Δf = 1. By contrast, the child node
that constrains Y may have Δh = −1 (if the Y -Z conflict is
resolved by the new path too) and Δf = 0.

The conflict between agents Y and Z is f -cardinal (recall
that Y is at its goal). If it is resolved in CT node N , the
child node that constrains Y will have Δg ≥ 2, because Y
is forced away from its goal. It will have Δh ≥ −1 and
Δf ≥ 1. The child node that constrains Z will have Δh ≥ 0
and Δf = 1 (similarly to the child that constrains X in the
conflict between X and Y as shown earlier).

3 f -Cardinal Conflicts
The identification of f -cardinal conflicts depends on the high-
level heuristic. Here, we assume the basic MVC heuristic
is used. These methods can be adapted for other high-level
heuristics, such as those proposed in (Li et al. 2019).

When CBS resolves an at-goal conflict in CT node N , in
one of the child nodes a vertex constraint on an agent’s goal
location is added at time step t′ which is later than t when
the agent is planned to reach its goal. Such a constraint will
incur a cost increase (Δg) of at least 2, because the earliest
time step the agent’s plan can end in is now t′ + 1 ≥ t+ 2.

As a result, at-goal conflicts are either g-cardinal or semi-
g-cardinal, because the g-value of at least one child node is
guaranteed to increase. Moreover, under a basic MVC high-
level heuristic, replanning the path of an agent can decrease
a node’s h-value by at most 1 (if its vertex was in the MVC),
yielding Δg ≥ 2, Δh ≥ −1 and Δf ≥ 1. So, at-goal
conflicts are either f -cardinal or semi-f -cardinal. Identifying
at-goal conflicts is trivial.

To identify f -cardinal conflicts in a CT node N , we first
identify g-cardinal conflicts in the usual way (see (Boyarski
et al. 2015)). Then, we construct the (g-)cardinal conflict
graph for N and compute N ’s h-value to be the size of its
MVC (see (Felner et al. 2018)). Finally, we iterate over all
agents that have edges in the (g-)cardinal conflict graph: for
each such agent A, we temporarily remove all of its edges
and compute the size of the MVC of the remaining graph.
This simulates the (g-)cardinal conflict graph and h-value of
a child node of N that constrains A according to one of its
g-cardinal conflicts, in the most optimistic case that agent
A’s new path causes no new g-cardinal conflicts and avoids
all of A’s current conflicts. If the size of the MVC remains
unchanged, all g-cardinal conflicts that agent A participates in
are semi-f -cardinal (like agent X and the X-Y conflict in the
example), and all g-cardinal conflicts that A participates in
where the other conflicting agent is at its goal are f -cardinal
(like agent Z and the Y -Z conflict). Of course, if the size of
the MVC decreases, the agent’s g-cardinal conflicts remain
g-cardinal, but they are not f -cardinal.

When an f -cardinal conflict exists it should be chosen,
otherwise a semi-f -cardinal conflict should be chosen. When

All instances Hard instances
Group CBS f -cardinal CBS f -cardinal
City 12767 13071 270 574
Empty 9209 9283 163 237
Games 20745 21721 806 1782
Mazes 2584 2728 117 261
Random 11454 11767 333 631
Rooms 3986 4231 149 394
Warehouse 17357 17627 249 519

Table 1: Solved instances for CBS and CBS-f -cardinal. We
report all instances and hard instances only (>30s).

no such conflicts are found, the choice should be as proposed
previously (see (Boyarski et al. 2015)): g-cardinal, then semi-
g-cardinal and finally non-cardinal conflicts.

4 Experimental Results
We experimented on the MAPF benchmarks (Stern et al.
2019) and ran a baseline CBS solver that only prioritizes
g-cardinal conflicts against one that prioritizes f -cardinal
conflicts, under a timeout of 1 minute. In total, 80581 problem
instances were solved by at least one of the solvers. 2464
problem instances were only solved by our improved solver,
while only 153 instances were only solved by the baseline.

Table 1 shows the number of instances that were solved
successfully by each solver for different map groups. The
table shows separate counts for all instances solved, and all
hard instances that were solved. We define hard instances as
instances any of the solvers either failed on or required more
than half the allotted time to solve (30 seconds). Prioritizing
f -cardinal conflicts is always beneficial, and especially on
hard instances, where it more than doubles the number of
instances that can be solved. The CBS version that prioritizes
f -cardinal conflicts also consistently generates fewer nodes
and runs faster.

References
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.; Betzalel,
O.; and Shimony, E. 2015. ICBS: Improved conflict-based search
algorithm for multi-agent pathfinding. IJCAI 2015:740–746.
Felner, A.; Stern, R.; Shimony, S. E.; Boyarski, E.; Goldenberg,
M.; Sharon, G.; Sturtevant, N.; Wagner, G.; and Surynek, P. 2017.
Search-based optimal solvers for the multi-agent pathfinding prob-
lem: summary and challenges. In SoCS 2017, 29–37.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T. K. S.;
and Koenig, S. 2018. Adding heuristics to conflict-based search for
multi-agent path finding. In ICAPS 2018, 83–87.
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S. 2019.
Improved Heuristics for Multi-Agent Path Finding with Conflict-
Based Search. In IJCAI 2019, 442–449.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding. Arti-
ficial Intelligence 219:40–66.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.; Walker,
T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.; Barták, R.; and
Boyarski, E. 2019. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In SoCS 2019, 151–159.

124




