Multi-Directional Search

Dor Atzmon,1 Jiaoyang Li,2 Ariel Felner,1 Eliran Nachmani,1 Shahaf Shperberg,1 Nathan Sturtevant,3 Sven Koenig2
1Ben-Gurion University
2University of Southern California
3University of Alberta

dorat@post.bgu.ac.il, jiaoyanl@usc.edu, felner@bgu.ac.il, nachammi@post.bgu.ac.il,
shperbsh@post.bgu.ac.il, nathanst@ualberta.ca, skoenig@usc.edu

1 Problem Definition

In the Multi-Agent Meeting (MAM) (Yan, Zhao, and Ng 2015) problem we are given a weighted graph $G = (V, E)$ and a set of k start locations $S = \{s_1, \ldots, s_k\}$ ($S \subseteq V$) for k agents $A = \{a_1, \ldots, a_k\}$. The cost of edge $(v, v') \in E$ is denoted by $c(v, v') \geq 0$. A solution to MAM is a target location $t \in V$ indicating a meeting location for the agents, plus a set of paths from each s_i to t. An optimal solution (meeting location) t^* has the lowest cost among all solutions, and its cost is C^*. Let $d(v, u)$ be the cost of the shortest path from v to u. We consider two cost functions: Sum-Of-Costs (SOC) and Makespan (MKSP) that are defined as follows. SOC: $C_{SOC}(t) = \sum_{a_i \in A} d(s_i, t)$, and MKSP: $C_{MKSP}(t) = \max_{a_i \in A} d(s_i, t)$.

2 Multi-Directional MM (MM*)

MM* is a multi-directional best-first search algorithm that guarantees to return an optimal MAM solution for either SOC or MKSP. A node in MM* is a pair (a_i, v) representing an agent and its location. MM* organizes nodes in a single open-list (denoted OPEN) and a single closed-list (denoted CLOSED). OPEN is initialized with k root nodes: (a_i, s_i) representing each of the k agents and its start location. Each node is associated with a g-value. Naturally, $g(a_i, s_i) = 0$. Let $N(v)$ be the neighbours of v. Expanding a node (a_i, v) is composed of two actions: (1) Generating a node (a_i, v') for each $v' \in N(v)$, while setting $g(a_i, v') = g(a_i, v) + c(v, v')$ and inserting it to OPEN. (2) Moving (a_i, v) to CLOSED.

We say that v is a possible goal if it was generated from all directions. Its cost, $C(v)$, depends on the cost function. Let U be the cost of the incumbent solution, i.e., U is the minimum $C(v)$ among all possible goals (initially $U = \infty$). U is an upper bound on C^*. MM* halts when $f_{min} \geq U$, where f_{min} is the minimum f-value in OPEN.

Consider node (a_i, v) in OPEN. $f_{SOC}(a_i, v)$ is the cost of the minimum solution such that: (1) a_i is forced to pass through v. (2) a_i continues from v to meet the other agents at some location t. (3) Each of the other agents a_j travels from s_j to t. Now, $f_{SOC}(a_i, v) = g(a_i, v) + h_{SOC}(a_i, v)$ where $h_{SOC}(a_i, v)$ is the sum of the minimal remaining cost for a_i that will complement the path that a_i has passed (with cost $g(a_i, v)$) getting it to t (item 2), plus the cost of the other agents to get from their start locations to t (item 3): $h_{SOC}(a_i, v) = \min_{v'} d(v', t) + \sum_{a_j \in A \setminus \{a_i\}} d(s_j, t)$.

Let $h_{SOC}(a_i, v)$ be an admissible heuristic, i.e., $h_{SOC}(a_i, v) \leq h^*_SOC(a_i, v)$. For SOC, naturally,

$$f_{SOC}(a_i, v) = g(a_i, v) + h_{SOC}(a_i, v). \quad (1)$$

For a given possible meeting location t we want the maximal path of one of the agents. If it is our current agent a_i then this is given by $g(a_i, v) + d(v, t)$ (top line of the max term). If it is some other agent a_j then it is given by $d(s_j, t)$ (bottom).

Next, we need to define f_{MKSP} as a lower bound on f_{SOC}. Here, we do not define h^*_SOC and h_{MKSP} but define $f_{MKSP}(a_i, v)$ in terms of $h_{SOC}(a_i, v)$ as follows:

$$f_{MKSP}(a_i, v) = \min_{v'} \left\{ \max \left\{ g(a_i, v) + d(v, t), \max_{a_j \in A \setminus \{a_i\}} d(s_j, t) \right\} \right\}. \quad (2)$$

$g(a_i, v)$ is a lower bound because a_i has already traveled a path of cost $g(a_i, v)$ and $f_{MKSP}(a_i, v)$ and $g(a_i, v)$ are greater than or equal to $g(a_i, v)$. Observe that $f_{MKSP}(a_i, v) \leq f^*_{MKSP}(a_i, v)$. This is because one of the agents must at least travel $f^*_{MKSP}(a_i, v)$. Since $f_{SOC}(a_i, v)$ is a lower bound on $f_{SOC}(a_i, v)$ then dividing it by k will yield a lower bound on $f_{MKSP}(a_i, v)$.

Costs of subsets f^*_{MKSP}, for k agents is determined by the longest path of one of the agents. Therefore, f_{MKSP} as well as f^*_{MKSP} for any subset of these k agents are also lower bounds on f_{MKSP} of all k agents. Thus, for any subset of $k' < k$ agents, we can compute f_{MKSP} and use it as a lower bound for f_{MKSP} for the entire set of k agents. In our experiments, we tried all combinations of pairs of agents.
3 Heuristics for MM*

We introduce a number of heuristics that are plugged directly in $f_{SOC}(a_i, v)$ and indirectly for f_{MKSP} (Equations 1 and 3). Let $t^*(a_i, v)$ be the optimal meeting location where a_i is forced to go through v. For simplicity, we use t^* to denote $t^*(a_i, v)$ and $h(a_i, v)$ to denote $h_{SOC}(a_i, v)$. Let $S_i(v)$ be a set of all start locations in S, except for s_i, which is replaced with $v (S_i(v) = S \setminus \{s_i\} \cup \{v\})$. Thus, $h'_{SOC}(a_i, v) = \sum_{v' \in S_i(v)} d(v', t^*)$.

$h_1 :$ Clique Heuristic We assume that for every pair of locations (v_1, v_2) there exists a classic admissible heuristic h, such that $h(v_1, v_2) \leq d(v_1, v_2)$. Based on the triangle inequality, for every pair of locations $v_1, v_2 \in S_i(v)$ $(v_1 \neq v_2)$ we have that: $d(v_1, v_2) \leq d(v_1, t^*) + d(v_2, t^*)$. By summing all such pairs, we get: $\sum_{v_1, v_2 \in S_i(v)} d(v_1, v_2) \leq \sum_{v_1, v_2 \in S_i(v)} d(v_1, t^*) + d(v_2, t^*)$. As each $v' \in S_i(v)$ exists in $k - 1$ pairs, we can rewrite the right side of the equation as $(k - 1) \cdot \sum_{v' \in S_i(v)} d(v', t^*)$. Since $h(v_1, v_2) \leq d(v_1, v_2)$ we get the Clique heuristic:

$$h_1(a_i, v) = \sum_{v_1, v_2 \in S_i(v)} \frac{h(v_1, v_2)}{k - 1} \leq h^*(a_i, v) \quad (4)$$

$h_2 :$ Median Heuristic For a set of numbers $B \subset \mathbb{R}$, it is provable that the median of B is the sum of the absolute deviations, i.e., $\arg\min_{b \in \mathbb{R}} \sum_{b \in B} |b - r| = \text{median}(B)$. Let tm_d be the median number of dimension d. This creates a potential meeting location $tm = (tm_1, tm_2)$ that minimizes the sum of absolute deviations over two dimensions. Assume that the input graph $G = (\mathcal{V}, \mathcal{E})$ is a 4-connected 2D grid where every location $v \in \mathcal{V}$ can be represented by its coordinates $\vec{v} = (v_1, v_2)$. The L_1-distance for any two locations $u, v \in \mathcal{V}$ is defined as $|\vec{u} - \vec{v}|_1 = |u_1 - v_1| + |u_2 - v_2| (= \Delta x + \Delta y)$. By modeling the problem in an empty 2D L_1-space (no obstacles), we introduce the Median heuristic:

$$h_2(a_i, v) = \sum_{v' \in S_i(v)} |v'_1 - tm_1| + |v'_2 - tm_2| \leq h^*(a_i, v) \quad (5)$$

$h_3 :$ FastMap Heuristic FastMap (Cohen et al. 2018; Li et al. 2019) is a near-linear preprocessing algorithm that embeds the locations of a given edge-weighted undirected connected graph $G = (\mathcal{V}, \mathcal{E})$ into a D-dimensional L_1-space \mathbb{R}^D. Each location $v_i \in \mathcal{V}$ is mapped to a D-dimensional point $\vec{p}_i \in \mathbb{R}^D$. The length of the shortest path $d(v_i, v_j)$ between any two locations $v_i, v_j \in \mathcal{V}$ is approximated by the L_1-distance $|\vec{p}_i - \vec{p}_j|_1$ between the corresponding two points $\vec{p}_i, \vec{p}_j \in \mathbb{R}^D$ in this space. See (Cohen et al. 2018) for more details of FastMap. To compute h-values for MAM, h_3 applies the Median heuristic on the generated embedding \mathbb{R}^D. Let $\vec{p}_i \in \mathbb{R}^D$ be the corresponding point of the embedding of location v' generated by FastMap. The FastMap heuristic is defined as:

$$h_3(a_i, v) = \min_{\vec{p}_i \in \mathbb{R}^D} \sum_{v' \in S_i(v)} ||\vec{p}_i - \vec{t}||_1 \leq h^*(a_i, v) \quad (6)$$

Table 1: Average time on 500x500 grids with 10% obstacles

<table>
<thead>
<tr>
<th>Agent</th>
<th>SOC</th>
<th>MKSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>h0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h1</td>
<td>6.97</td>
<td>15.98</td>
</tr>
<tr>
<td>h2</td>
<td>0.16</td>
<td>4.66</td>
</tr>
<tr>
<td>h3</td>
<td>1.09</td>
<td>2.66</td>
</tr>
</tbody>
</table>

Figure 1: (a) Enigma map. (b) SOC time. (c) MKSP time.

4 Experimental Results

We compared all our new heuristics to the Dijkstra version of MM$^*(h = 0)$; denoted by h_0. For h_1, we used Manhattan Distance (MD) as a classic admissible heuristic between any two locations. The number of dimensions D for h_3 was always set to 10 as was suggested by Li et al. (2019).

We experimented on a 500x500 grid with 10% obstacles while varying the number of randomly placed agents from 3 to 9. Table 1 shows the average time over 50 instances. For SOC, h_2 was the best as it is suitable for grids with small number of obstacles. h_3 incurred preprocessing time of ≈ 30 secs. For MKSP, h_2 was the best too, but here (unlike SOC), h_3 was very close to h_2. This is probably because the clique heuristic for MKSP also guides the agents to the median.

We also experimented on the Enigma map (768x768; Figure 1(a)) from the Starcraft video game (Sturtevant 2012). Figure 1(b) shows the average time of 50 instances for 3 up to 9 agents for minimizing SOC. Here, h_3 was the best. Since this map has many obstacles, h_2 and h_1 were less effective than h_3 which uses real distances. Nevertheless, h_3 required preprocessing time of $39s$ for this map (done once). Similarly, for MKSP (Figure 1(c)) h_3 was again the best.

In conclusion, for grids with few obstacles, h_2 is best. For domains with many obstacles, h_3 is best but requires preprocessing. h_1 is not far from both and it is applicable to all domains without the need of preprocessing.

References