
Multi-Directional Search

Dor Atzmon,1 Jiaoyang Li,2 Ariel Felner,1 Eliran Nachmani,1
Shahaf Shperberg,1 Nathan Sturtevant,3 Sven Koenig2

1Ben-Gurion University
2University of Southern California

3University of Alberta
dorat@post.bgu.ac.il, jiaoyanl@usc.edu, felner@bgu.ac.il, nachamni@post.bgu.ac.il,

shperbsh@post.bgu.ac.il, nathanst@ualberta.ca, skoenig@usc.edu

1 Problem Definition
In the Multi-Agent Meeting (MAM) (Yan, Zhao, and Ng
2015) problem we are given a weighted graph G = (V,E)
and a set of k start locations S = {s1, . . . , sk} (S ⊆ V ) for
k agents A = {a1, . . . , ak}. The cost of edge (v, v′) ∈ E
is denoted by c(v, v′) ≥ 0. A solution to MAM is a tar-
get location t ∈ V indicating a meeting location for the
agents, plus a set of paths from each si to t. An optimal so-
lution (meeting location) t∗ has the lowest cost among all
solutions, and its cost is C∗. Let d(v, u) be the cost of the
shortest path from v to u. We consider two cost functions:
Sum-Of-Costs (SOC) and Makespan (MKSP) that are defined
as follows. SOC: CSOC (t) =

∑
ai∈A d(si, t), and MKSP:

CMKSP (t) = maxai∈A d(si, t).

2 Multi-Directional MM (MM*)
MM* is a multi-directional best-first search algorithm that
guarantees to return an optimal MAM solution for either
SOC or MKSP. A node in MM* is a pair (ai, v) representing
an agent and its location. MM* organizes nodes in a single
open-list (denoted OPEN) and a single closed-list (denoted
CLOSED). OPEN is initialized with k root nodes: (ai, si)
representing each of the k agents and its start location. Each
node is associated with a g-value. Naturally, g(ai, si) = 0.
Let N(v) be the neighbours of v. Expanding a node (ai, v) is
composed of two actions: (1) Generating a node (ai, v

′) for
each v′ ∈ N(v), while setting g(ai, v

′) = g(ai, v) + c(v, v′)
and inserting it to OPEN. (2) Moving (ai, v) to CLOSED.

We say that v is a possible goal if it was generated from
all directions. Its cost, C(v), depends on the cost function.
Let U be the cost of the incumbent solution, i.e., U is the
minimum C(v) among all possible goals (initially U = ∞).
U is an upper bound on C∗. MM* halts when fmin≥ U ,
where fmin is the minimum f -value in OPEN.

Consider node (ai, v) in OPEN. f∗
SOC (ai, v) is the cost

of the minimum solution such that: (1) ai is forced to pass
through v. (2) ai continues from v to meet the other agents
at some location t. (3) Each of the other agents aj travels
from sj to t. Now, f∗

SOC (ai, v) = g(ai, v) + h∗
SOC (ai, v)

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where h∗
SOC (ai, v) is the sum of the minimal remaining cost

for ai that will complement the path that ai has passed (with
cost g(ai, v)) getting it to t (item 2), plus the cost of the
other agents to get from their start locations to t (item 3):
h∗
SOC (ai, v) = mint∈V [d(v, t) +

∑
aj∈A\{ai} d(sj , t)].

Let hSOC (ai, v) be an admissible heuristic, i.e.,
hSOC (ai, v) ≤ h∗

SOC (ai, v). For SOC, naturally,

fSOC (ai, v) = g(ai, v) + hSOC (ai, v). (1)

The MKSP case is more complicated. Since in MKSP we
take the maximum among agents (not the sum), we do not
know which agent will be taken by the max operation. We
begin by defining f∗

MKSP (ai, v), which is the best solution
given that ai is forced to pass through v:

f∗
MKSP (ai, v) = mint∈V

[
max

{
g(ai, v) + d(v, t)

maxaj∈A\{ai} d(sj , t)

}]
.

(2)
For a given possible meeting location t we want the maximal
path of one of the agents. If it is our current agent ai then this
is given by g(ai, v) + d(v, t) (top line of the max term). If it
is some other agent aj then it is given by d(sj , t) (bottom).

Next, we need to define fMKSP as a lower bound on
f∗
MKSP . Here, we do not define h∗

MKSP and hMKSP but
define fMKSP (ai, v) in terms of hSOC (ai, v) as follows:

fMKSP (ai, v) = max
{
g(ai, v),

g(ai,v)+hSOC (ai,v)
k

}
. (3)

g(ai, v) is a lower bound because ai has already traveled a
path of cost g(ai, v) and f∗

MKSP (ai, v) ≥ g(ai, v). Observe
that f∗

SOC (ai,v)
k ≤ f∗

MKSP (ai, v). This is because one of the
agents must at least travel f∗

SOC (ai,v)
k . Since fSOC (ai, v) is a

lower bound on f∗
SOC (ai, v) then dividing it by k will yield

a lower bound on f∗
MKSP (ai, v).

Costs of subsets f∗
MKSP for k agents is determined by

the longest path of one of the agents. Therefore, f∗
MKSP as

well as fMKSP for any subset of these k agents are also
lower bounds on f∗

MKSP of all k agents. Thus, for any subset
of k′ < k agents, we can compute fMKSP and use it as a
lower bound for f∗

MKSP for the entire set of k agents. In our
experiments, we tried all combinations of pairs of agents.

The Thirteenth International Symposium 
 on Combinatorial Search (SoCS 2020)

121



3 Heuristics for MM*
We introduce a number of heuristics that are plugged directly
in fSOC (ai, v) and indirectly for fMKSP (Equations 1 and 3).
Let t∗(ai, v) be the optimal meeting location where ai is
forced to go through v. For simplicity, we use t̂∗ to denote
t∗(ai, v) and h(ai, v) to denote hSOC (ai, v). Let Si(v) be a
set of all start locations in S, except for si which is replaced
with v (Si(v) = S \ {si} ∪ {v}). Thus, h∗

SOC(ai, v) =∑
v′∈Si(v)

d(v′, t̂∗).

h1 : Clique Heuristic We assume that for every pair of
locations (v1, v2) there exists a classic admissible heuris-
tic h, such that h(v1, v2) ≤ d(v1, v2). Based on the trian-
gle inequality, for every pair of locations v1, v2 ∈ Si(v)
(v1 �= v2) we have that: d(v1, v2) ≤ d(v1, t̂∗) + d(v2, t̂∗).
By summing all such pairs, we get:

∑
v1,v2∈Si(v)

d(v1, v2) ≤∑
v1,v2∈Si(v)

d(v1, t̂∗)+d(v2, t̂∗). As each v′ ∈ Si(v) exists
in k − 1 pairs, we can rewrite the right side of the equation
as (k − 1) ·∑v′∈Si(v)

d(v′, t̂∗). Since h(v1, v2) ≤ d(v1, v2)

we get the Clique heuristic:

h1(ai, v) =
∑

v1,v2∈Si(v)

h(v1, v2)

k − 1
≤ h∗(ai, v) (4)

h2 : Median Heuristic For a set of numbers B ⊂ R, it
is provable that the median of B minimizes the sum of
the absolute deviations, i.e., argminr∈R

∑
b∈B |b − r| =

median{B}. Let tmd be the median number of dimension d.
This creates a potential meeting location tm = (tm1, tm2)
that minimizes the sum of absolute deviations over two
dimensions. Assume that the input graph G = (V,E) is
a 4-connected 2D grid where every location v ∈ V can
be represented by its coordinates �v = (v1, v2). The L1-
distance for any two locations u, v ∈ V is defined as
||�u−�v||1 = |u1 − v1|+ |u2 − v2| (= Δx+Δy). By model-
ing the problem in an empty 2D L1-space (no obstacles), we
introduce the Median heuristic:

h2(ai, v) =
∑

v′∈Si(v)

|v′1 − tm1|+ |v′2 − tm2| ≤ h∗(ai, v)

(5)

h3 : FastMap Heuristic FastMap (Cohen et al. 2018; Li
et al. 2019) is a near-linear preprocessing algorithm that
embeds the locations of a given edge-weighted undirected
connected graph G = (V,E) into a D-dimensional L1-space
R

D. Each location vi ∈ V is mapped to a D-dimensional
point �pi ∈ R

D. The length of the shortest path d(vi, vj)
between any two locations vi, vj ∈ V is approximated by
the L1-distance ||�pi − �pj ||1 between the corresponding two
points �pi, �pj ∈ R

D in this space. See (Cohen et al. 2018) for
more details of FastMap. To compute h-values for MAM, h3

applies the Median heuristic on the generated embedding R
D.

Let �p′ ∈ R
D be the corresponding point of the embedding of

location v′ generated by FastMap. The FastMap heuristic is
defined as:

h3(ai, v) = min
�t∈RD

{
∑

v′∈Si(v)

||�p′ − �t||1} ≤ h∗(ai, v) (6)

SOC MKSP
#Agents 3 5 7 9 3 5 7 9

h0 6.87 18.98 29.46 44.17 1.91 6.73 11.03 18.07
h1 0.16 4.66 16.15 36.29 0.47 2.62 3.57 6.53
h2 0.16 0.81 0.85 1.27 0.46 2.60 3.52 6.38
h3 1.92 8.50 18.66 33.20 1.48 6.57 9.59 16.46

Table 1: Average time on 500x500 grids with 10% obstacles

(a)

0

10

20

30

40

50

3 5 7 9

Ti
m

e 
(s

ec
)

#Agents

h0
h1
h2
h3

0

4

8

12

16

3 5 7 9

Ti
m

e 
(s

ec
)

#Agents

h0
h1
h2
h3

SOC MKSP

(c)(b)

Figure 1: (a) Enigma map. (b) SOC time. (c) MKSP time.

4 Experimental Results
We compared all our new heuristics to the Dijkstra version
of MM* (h = 0; denoted by h0). For h1, we used Manhattan
Distance (MD) as a classic admissible heuristic between
any two locations. The number of dimensions D for h3 was
always set to 10 as was suggested by Li et al. (2019).

We experimented on a 500x500 grid with 10% obstacles
while varying the number of randomaly placed agents from 3
to 9. Table 1 shows the average time over 50 instances. For
SOC, h2 was the best as it is suitable for grids with small
number of obstacles. h3 incurred preprocessing time of ≈ 30
secs. For MKSP, h2 was the best too, but here (unlike SOC),
h1 was very close to h2. This is probably because the clique
heuristic for MKSP also guides the agents to the median.

We also experimented on the Enigma map (768x768; Fig-
ure 1(a)) from the Starcraft video game (Sturtevant 2012).
Figure 1(b) shows the average time of 50 instances for 3 up
to 9 agents for minimizing SOC. Here, h3 was the best. Since
this map has many obstacles, h2 and h1 were less effective
than h3 which uses real distances. Nevertheless, h3 required
preprocessing time of 39s for this map (done once). Similarly,
for MKSP (Figure 1(c)) h3 was again the best.

In conclusion, for grids with few obstacles, h2 is best.
For domains with many obstacles, h3 is best but requires
preprocessing. h1 is not far from both and it is applicable to
all domains without the need of preprocessing.

References
Cohen, L.; Uras, T.; Jahangiri, S.; Arunasalam, A.; Koenig,
S.; and Kumar, T. K. S. 2018. The FastMap algorithm for
shortest path computations. In IJCAI, 1427–1433.
Li, J.; Felner, A.; Koenig, S.; and Kumar, T. S. 2019. Using
fastmap to solve graph problems in a euclidean space. In
ICAPS, 273–278.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Computational Intelligence and AI in Games 4(2):144–
148.
Yan, D.; Zhao, Z.; and Ng, W. 2015. Efficient processing of
optimal meeting point queries in euclidean space and road
networks. Knowledge and Information Systems 42(2):319–
351.

122




