
Computing Plan-Length Bounds Using
Lengths of Longest Paths (Extended Abstract)

Mohammad Abdulaziz, Dominik Berger
Technical University of Munich, Munich, Germany

Many techniques for solving problems defined on transi-
tion systems, like SAT-based planning (Kautz and Selman
1992) and bounded model checking (Biere et al. 1999), bene-
fit from knowledge of upper bounds on the lengths of solution
transition sequences, aka completeness thresholds. If N is
such a bound, and if a solution exists, then that solution need
not comprise more than N transitions. In AI planning, up-
per bounds on plan lengths can be used as a completeness
threshold, i.e. to prove a planning problem has no solution,
and also it can be used to improve the ability of a SAT-based
planner to find a solution.

Biere et al. (1999) identified the diameter (d) and the recur-
rence diameter (rd), which are topological properties of the
state space, as completeness thresholds for bounded model-
checking of safety and liveness properties, respectively. d is
the longest shortest path between any two states. rd is the
length of the longest simple path in the state space, i.e. the
length of the longest path that does not traverse any state
more than once. Both, d and rd , are upper bounds on the
shortest plan’s length, i.e. they are completeness thresholds
for SAT-based planning. In this work we devise new methods
to compute rd .

Background

A maplet, v �→ b, maps a variable v—i.e. a state-
characterising proposition—to a Boolean b. A state, x, is
a finite set of maplets. We write D(x) to denote {v | (v �→
b) ∈ x}, the domain of x. For states x1 and x2, the union,
x1 � x2, is defined as {v �→ b | v ∈ D(x1) ∪D(x2) ∧ if v ∈
D(x1) then b = x1(v) else b = x2(v)}. Note that the
state x1 takes precedence. An action is a pair of states, (p, e),
where p represents the preconditions and e represents the
effects. For action π = (p, e), the domain of that action is
D(π) ≡ D(p) ∪ D(e). When an action π (= (p, e)) is exe-
cuted at state x, it produces a successor state π(x), formally
defined as π(x) = if p ⊆ x then e � x else x. We lift
execution to lists of actions

→
π , so

→
π (x) denotes the state

resulting from successively applying each action from
→
π in

turn, starting at x, which corresponds to a path in the state
space. A set of actions δ constitutes a factored transition sys-
tem. D(δ) denotes the domain of δ, which is the union of

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the domains of all the actions it contains. Let set(
→
π) be the

set of elements from
→
π . The set of valid action sequences,

δ∗, is {→π | set(
→
π) ⊆ δ}. The set of valid states, U(δ),

is {x | D(x) = D(δ)}. G(δ) denotes the state space of δ,
which is the set of pairs {(x, π(x)) | x ∈ U(δ), π ∈ δ},
corresponding to different transitions in the state space of δ.

Definition 1. The diameter, written d(δ), is the length of the
longest shortest action sequence, formally max{min{|→π ′| |
→
π (x) =

→
π

′
(x) ∧ →

π
′ ∈ δ∗} | x ∈ U(δ) ∧ →

π ∈ δ∗}
Note that if there is a valid action sequence between any

two states, then there is a valid action sequence between them
which is not longer than d.

Definition 2. Let distinct(x,
→
π) denote that all states tra-

versed by executing
→
π at x are distinct states. The recur-

rence diameter is the length of the longest simple path in
the state space, formally max{|→π | | x ∈ U(δ) ∧ →

π ∈
δ∗ ∧ distinct(x,

→
π)}.

Note that in general rd is an upper bound on d, and that it
can be exponentially larger than d.

Currently, the compositional bounding method by Abdu-
laziz, Gretton, and Norrish 2017 is the most successful in
decomposing a given system into the smallest abstractions.
It decompose a given factored system using two kinds of
abstraction: projection and snapshotting. After the system
is decomposed into abstractions, which we call base case
systems, a topological property, which we call the base case
function, of the state space of each of the base case systems is
computed, and then its values for base case systems are com-
posed to bound d of the concrete system. Abdulaziz 2019 use
the traversal diameter as a base case function. The traversal
diameter is one less than the largest number of states that
could be traversed by any path.

Definition 3. Let ss(x,
→
π) be the set of states traversed by

executing
→
π at x. Traversal diameter, written as td(δ), is

max{|ss(x,
→
π)| − 1 | x ∈ U(δ) ∧ →

π ∈ δ∗}.

Contributions

Our first contribution is showing that rd can be exponentially
smaller than td . This gives rise to the possibility of substantial

The Thirteenth International Symposium
 on Combinatorial Search (SoCS 2020)

117

improvements to the bounds computed if we use rd as a base
case function for compositional bounding, instead of td .

Biere et al. 1999 suggested the only method to compute rd
of which we are aware. They encode the question of whether
a given number k is rd of a given transition system as a
SAT formula. rd is found by querying a SAT-solver for dif-
ferent values of k, until the SAT-solver answers positively
for one k. The method terminates since rd cannot be larger
than one less the number of states in the given transition sys-
tem. The size of their encoding grows linearly in k2. In our
experiments we use an SMT solver to reason about encod-
ing of rd . Firstly, let for a set S of n-tuples and a predicate
P of arity n,

∧
S. P (a1, a2 . . . , an) denote the conjunc-

tion of P (a1, a2 . . . , an), for all (a1, a2 . . . , an) ∈ S. Note:∧
S. Q(a1, a2 . . . , an) is only well defined if S is finite.

Analogously, let
∨

denote a finite disjunction. We reformu-
late the encoding of Biere et al. as follows.

Encoding 1. Let for δ, G(x1, x2) denote (x1, x2) ∈ G(δ).
For δ and 0 ≤ k, let φ′

1(δ, k) denote the conjunction
of the formulae (i)

∧{(x1, x2) | G(x1, x2)}. G(x1, x2),
(ii)

∧{(x1, x2) | x1, x2 ∈ U(δ)∧¬G(x1, x2)}. ¬G(x1, x2),
and (iii)

∧{i | 1 ≤ i ≤ k}. (G(yi, yi+1)∧
∧{j | i < j ≤ k}.

yi �= yj).

To use the above encoding to compute rd of a given sys-
tem δ, we iteratively query an SMT solver to check for the
satisfiability of φ′

1(δ, k) for different values of k, starting at
1, until the we have an unsatisfiable formula. The smallest k
for which the formula is unsatisfiable is rd(δ).

Observe that, to use Encoding 1, one has to build the entire
state space as a part of building the encoding, i.e. one has
to build the graph G(δ) and include it in the encoding. This
means that the worst-case complexity of computing rd using
either one of those encodings is doubly-exponential.

To experimentally test this encoding, we use it as a base
case function for the compositional algorithm by Abdulaziz,
Gretton, and Norrish 2017 instead of td . We use Yices
2.6.1 (Dutertre 2014) as the SMT solver to prove the satisfia-
bility or unsatisfiability of the resulting SMT formulae. Our
experiments show that Encoding 1 is not practical when used
as a base case function: bounds are only computed within the
timeout for less than 0.1% of our set of benchmarks.

Our second contribution is devising an encoding that per-
forms better than Encoding 1. We observe that the encodings
by Biere et al. does not exploit the compactness of factored
representations of transition systems, and instead assume
explicitly represented transition systems. We devise a new
encoding which exploits the factored representation in a way
that is reminiscent to encodings used for SAT-based plan-
ning (Kautz and Selman 1992). This avoids constructing the
state space in an explicit form, whenever possible. We devise
a new encoding that avoids building the state space as a part
of the encoding and, effectively, we let the SMT solver build
as much of it during its search as needed.

Encoding 2. For a state x, let xi denote the formula (
∧{v |

v ∈ x}. vj) ∧ (
∧{v | ¬v ∈ x}. ¬vj). For δ and 0 ≤ k, let

φ2(δ, k) denote the conjunction of the formulae

(ii)
∧{i | 1 ≤ i ≤ k}. ∨{π | π ∈ δ}. πi,

(iii)
∧{i | 1 ≤ i ≤ k}. ∧{(π, π′) | π, π′ ∈ δ}. ¬πi ∨ ¬π′

i

(iv)
∧{(i, j) | 1 ≤ i < j ≤ k}. ∨{v | v ∈ D(δ)}. vi �= vj

(i)
∧{i | 1 ≤ i ≤ k}. πi → pre(π)i ∧ eff(π)i+1 ∧ (

∧{v |
v ∈ D(δ) \ D(π)}. vi ↔ vi+1),

We experimentally test the new encoding as a base case
function for the algorithm. We note two observations. En-
coding 2 performs much better than Encoding 1 in practice
since our new encoding is represented in terms of the factored
representation of the system, while Encoding 1 represents the
system as an explicitly represented state space. This leads to
exponentially smaller formulae: Encoding 2 grows quadrati-
cally with the size of the given factored system, while Encod-
ing 1 grows quadratically in the size of the state space, which
can be exponentially larger than the given factored system.
However, both encodings have the same worst-case doubly
exponential running time.

Secondly, when rd is the base case function the bounds
computed are much tighter than those computed when td as a
base case function. This agrees with the theoretical prediction.
In particular, in the domains TPP, ParcPrinter, NoMystery,
Logistics, OpenStacks, Woodworking, Satellites, Scanalyzer,
Hyp and NewOpen (a compiled Qualitative Preference rovers
domain), we have between two orders of magnitude and
50% smaller bounds when rd is used as a base case function
compared to td . Also, the domain Visitall has twice as many
problems whose bounds are less than 109 when rd is used
instead of td . In contrast, equal bounds are found using rd
and td as base case functions in Zeno.

Using the bounds for SAT-based planning The coverage
of MP increases if we use as horizons the bounds computed
when rd is the base case, compared to when using td as a base
case function. Compared to td , rd increases the coverage
by 187 solvable problems, overall. Those problems come
from the domains: NEWOPEN (104 problems), NoMystery
(23 problems), Floortile (25 problems), rover (15 problems),
satellite (10 problems), TPP (8 problems), BlocksWorld (1
problem), and ParcPrinter (1 problem).

References

Abdulaziz, M.; Gretton, C.; and Norrish, M. 2017. A
State Space Acyclicity Property for Exponentially Tighter Plan
Length Bounds. In International Conference on Automated
Planning and Scheduling (ICAPS). AAAI.
Abdulaziz, M. 2019. Plan-length bounds: Beyond 1-way de-
pendency. In Proceedings of the Thirty-Third AAAI Conf. on
Artificial Intelligence. Association for the Advancement of Ar-
tificial Intelligence.
Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999. Sym-
bolic model checking without BDDs. In TACAS, 193–207.
Dutertre, B. 2014. Yices 2.2. In Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings, 737–744.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiability.
In ECAI, 359–363.

118

