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Abstract

Multi-agent path finding (MAPF) is the problem of moving a
set of agents from their individual start locations to their in-
dividual goal locations, without collisions. This problem has
practical applications in video games, traffic control, robotics,
and more. In MAPF we assume that agents occupy one loca-
tion each time step. However, in real life some agents have
different size or shape. Hence, a standard MAPF solution
may be not suited in practice for some applications. In this
paper, we describe a novel algorithm, based on the CBS algo-
rithm, that finds a plan for moving a set of train-agents, i.e.,
agents that occupy a sequence of two or more locations, such
as trains, buses, planes, or even snakes. We prove that our so-
lution is optimal and show experimentally that indeed such a
solution can be found. Finally, we explain how our solution
can also apply to agents with any geometric shape.

1 Introduction
In the Multi-Agent Path Finding (MAPF) problem a plan is
required for moving a set of agents from their start locations
to their goal locations, without collisions. MAPF has practi-
cal applications in video games, traffic control, and robotics
(see Felner et al. 2017 for a survey). Generally, a plan that
minimizes some cost function is needed, e.g., the sum of the
time required to get to the goal location over all agents (also
known as the sum-of-costs). Even though finding such an
optimal solution is NP-hard (Yu and LaValle 2013), some
efficient algorithms manage to do so for more than a hun-
dred agents (Wagner and Choset 2015; Boyarski et al. 2015;
Surynek 2012; Felner et al. 2018).

Most MAPF algorithms assume that agents can occupy
only a single location/cell/vertex at any single time step.
However, in reality, agents normally can have different sizes
and different shapes, and hence can occupy more than a sin-
gle location per time step. In this paper, we investigate a new
type of solution that is suitable for moving agents with the
shape of a train, i.e., each agent occupies a sequence of lo-
cations. We define a problem, called: Multi-Train Path Find-
ing, in which a plan is needed for moving a set of train-
agents without collisions. A train-agent is an agent that each
time step occupies its current location (by the head of the
train) and the previous k locations on its path (by the tail of
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the train). Thus, even by waiting, it occupies k+1 locations
each time. Note, that if k = 0 then the problem is similar to
the standard MAPF problem. This problem is most suitable
for cases where the agents have a long shape, e.g., trains,
buses, planes, or even snakes, that can rotate and turn in dif-
ferent directions along their path.

Li et al. (2019) suggested a multi-agent path finding algo-
rithm for large agents, and has shown that an optimal plan
can be found for multiple large agents. However, it only fits
agents with fixed shapes, e.g., circles or squares, that occupy
the same locations after rotating them. XCBS (Thomas, De-
odhare, and Murty 2015) is another MAPF algorithm in
which agents occupy more than a single location each time
step. This algorithm is designed for agents that function as
convoys, and hence each agent occupies multiple consecu-
tive edges. These convoys have been defined only to occupy
edges and therefore the conflicts between agents were only
on edges. Consequently, agents can cross the same location
at the same time without causing collisions. Agents may also
occupy more than one location in cases of uncertainty. In
these cases, agents keep their distance from each other as
their plan execution is inaccurate, and hence, they occupy
multiple locations. In a k-robust plan (Atzmon et al. 2018),
each agent can be delayed up to k times and no collision
will occur. To avoid collisions that might occur from delays,
agents cannot cross the same location in two closer than k
times. Although each agent is at one location, no other agent
can enter this location for the next k steps. This might seem
similar to a case where each agent occupies k + 1 locations
(as a train); however, it is not the case if the agent waits in
some location. Similarly, agents occupy multiple locations
in MAPF under uncertainty (Wagner and Choset 2017), but
not a fixed number of locations because agents can wait. A
deeper exploration of the differences between this paper and
the related researches is presented later in this paper, includ-
ing adjusting our solution to any other type of agent.

Next, we define the problem and suggest an optimal al-
gorithm for solving it. Experimentally, we show that finding
an optimal solution to the problem can be done relatively
fast. Then, we explain how to adjust the solution for agents
with different shapes. Finally, we conclude this research and
suggest directions for future work.
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Figure 1: Agent occupation example.

2 Problem Definition
In the Multi-Agent Path Finding (MAPF) problem a plan π
is required for moving a set of n agents. For each agent ai,
π contains a path πi from its start location si to its goal lo-
cation gi. Each time an agent may either move to an adja-
cent location or wait in its current location. πi(t) denoted
the location of agent ai at time step t, hence πi(0) = si and
πi(|πi|) = gi. A conflict between ai and aj at time t can be
either a vertex conflict (πi(t) = πj(t)) or an edge conflict
(πi(t) = πj(t + 1) ∧ πi(t + 1) = πj(t)). A plan π is valid
if there are no conflicts between all agents, and is optimal if
it has the lowest cost, among all valid plans. There are a few
commonly used cost functions. In this research we focused
on a cost function called sum-of-costs, which is the sum of
the path costs of all agents.

Agent occupation. While in standard MAPF each agent
only occupies its current location, here each agent occu-
pies a sequence of locations. Given a path πi, we denote
the list of locations that ai occupies at time t by the list
Oi(t) = (l1, . . . , lk+1). Oi(t) contains the location of agent
ai at time t (the head of the train) as well as its last k lo-
cations (the tail of the train). The start and goal locations
represent stations. Hence, we define that agents start by oc-
cupying only their start location, growing to the size of k+1
as they leave their start locations, and shrinking back to the
size of 1 as they enter their goal locations. Figure 1 shows the
occupied locations of agent ai at each time step for k = 2,
while executing πi = (s,A,B,B, g). The locations occu-
pied by the agent are represented by the blue circles on
the figure, where the head is represented by a bigger cir-
cle. For instance, we can see that Oi(2) = (B,A, s) and
Oi(≥ 6) = (g). Note that at times 2 and 3 the agent occupies
the same locations as it performs a wait action. The cost of
πi is 4 as the agent arrives at g after performing 4 actions. We
defined this occupation, in which the tail follows the head,
and that all agents have the same k value (tail length) for
simplicity. Later in this paper we show how Oi(t) (this spe-
cific occupation) can be calculated and explain how it can be
generalized for agents with different sizes and shapes.

Definition 1 (Self conflict) A self conflict (a loop) 〈ai, l, t〉
in a plan π occurs iff agent ai occupies location l at time
step t more than once (not by performing a wait action), i.e.,
Oi(t) contains l more than once.

Definition 2 (Occupation conflict) An occupation conflict
〈ai, aj , l, t〉 in a plan π occurs iff agents ai and aj both oc-

Figure 2: MTPF problem example.

Algorithm 1: get-occupation function
1 get-occupation(plan πi, time t, size k)
2 Init empty list O
3 O.insert(πi(t))
4 t← t− 1
5 while (k ≥ O .size()) ∧ (t ≥ 0) do
6 if πi(t) 6= πi(t+ 1) then
7 O.insert(πi(t))

8 else if StandingAtGoal(πi, t) then
9 k ← k − 1

10 t← t− 1

11 return O

cupy the same location l at time step t, i.e., both Oi(t) and
Oj(t) contain l.

Multi-Train Path Finding (MTPF) is a generalization of
MAPF, in which each agent is a train-agent with a tail of
k locations. Thus, MAPF is a special case of MTPF, where
k = 0 (no tail). A plan π is a multi-train valid solution if
there are no self conflicts and no occupation conflicts in π.

Example. Figure 2 presents an example of a MTPF prob-
lem with k = 1, in which a path is needed for agents a1
and a2, from s1 and s2 to g1 and g2, respectively. Assum-
ing the path of agent a1 is (s1, B,C, g1) and the path of
agent a2 is (s2, A, s1, g2). There must be no self conflicts
and no occupation conflicts so that the plan will be consid-
ered as a valid solution. By calculating O described earlier
for both agents at each time step, we find that there are no
conflicts. For instance, at time 2, O1(2) = (C,B) while
O2(2) = (s1, A), thus there is no conflict at time 2. There-
fore, it is a valid solution. Assuming the path of agent a1 is
(s1, B,B,C, g1) and the path of agent a2 is (s2, A, s1, g2).
In this case, O1(2) = (B, s1) and O2(2) = (s1, A). Both
agents occupy location s1 at time 2, and hence the plan con-
tains an occupation conflict and is not a valid solution.

Calculating the occupation list. Oi(t) can be calculated
by the function get-occupation presented in Algorithm 1 as
follows. First, we initialize an empty listO, insert the current
location πi(t) into O (the train’s head), and decrease t (lines
2-4). Then, we iterate as long as k is greater than or equal
to the size of O as well as the current time t is greater than
or equal to 0 (line 5). If the current location πi(t) does not
equal to the next location πi(t+1), i.e, the agent preformed
a move action, then insert the current location to O (the cur-
rent location is occupied by the tail, lines 6-7). Otherwise,
if the agent preformed a wait action and stands at the goal
(and stays their), then we decrease k as the tail occupies one

126



less location (lines 8-9). We then decrease t and finish the
iteration (line 10). Finally, we return the list O (line 11).

3 Conflict-Based Solution
In this section, we present a conflict-based solution for solv-
ing the MTPF problem.

Conflict-Based Search
Conflict-based search (CBS) (Sharon et al. 2015) is a state-
of-the-art MAPF solver that has two levels (high-level and
low-level). The high-level of CBS searches the binary con-
straint tree (CT). Each node N ∈ CT contains: (1)
N.constraints, a set of constraints imposed on the agents,
where a constraint imposed on agent ai is a tuple 〈ai, l, t〉,
meaning that agent ai is prohibited from occupying location
l at time t; (2) N.π, a single solution that is consistent with
all constraints; and (3)N.cost, the cost of solutionN.π, that
is, the sum of the path costs of all agents. The root node con-
tains an empty set of constraints. The high-level performs a
best-first search on the CT, ordering the nodes by their costs.

Generating a node in the CT. Given a node N , the low-
level of CBS finds a shortest path for each agent that satisfies
all constraints in node N imposed on the agent.

Expanding a node in the CT. Once CBS has chosen node
N for expansion, it checks the solution N.π for conflicts.
If it is conflict-free, then node N is a goal node and CBS
returns its solution. Otherwise, CBS splits nodeN on one of
the conflicts 〈ai, aj , t〉 (πi(t) = πj(t) = l) as follows. In any
conflict-free solution, at most one of the conflicting agents
ai and aj can occupy location l at time step t. Therefore,
at least one of the constraints 〈ai, l, t〉 or 〈aj , l, t〉 must be
satisfied. Consequently, CBS splits node N by generating
two children of node N , each with a set of constraints that
adds one of these two constraints to the set N.constraints.

MT-CBS
Multi-Train CBS (MT-CBS) is a CBS-based algorithm de-
signed to return optimal MTPF solutions. MT-CBS differs
from CBS in how the low-level calculates paths, and in how
the high-level identifies and resolves conflicts.

Calculating paths. The low-level of CBS calculates a
path for a given agent without violating any constraint from
a given set of constraints. However, by using a standard low-
level solver this path can be invalid, as a train-agent might
have self conflicts. To overcome self conflicts, the low-level
must be slightly modified. Before the low-level generates a
new node, it performs a self conflict check. This can be done
easily by calling the get-occupation function described in
Algorithm 1. If O contains a location more than once, then
a self conflict exists, and this node will not be generated.

Moreover, to ensure that the low-level returns an optimal
path for a given agent, we cannot represent each low-level
state only by the agent’s current location. Two nodes with
the same train’s head can have a different sub-tree; thus, we
represent each state by its current list of occupations. Addi-
tionally, representing nodes by a set of occupations instead
of a list of occupations can also result in a non-optimal path.
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Figure 3: MT-CBS low-level example.

Figure 3 shows an example of a low-level search of MTPF
with k = 3, in which the head of the agent is in location A.
In Figure 3(a), each state represented only by the agent’s
head. Thus, it can either move to location D or to location
B. However, if the agent arrived at A from D (as presented
in Figure 3(b)) it cannot move to D as it results in a self
conflict (similarly for moving to location B in Figure 3(c)).
Therefore, we cannot represent states only by the head lo-
cation. In addition, in both Figures 3(b) and 3(c), the agent
occupies the same locations, for different paths. Although
the same locations are being occupied, each results in differ-
ent children (sub-trees). Hence, we represent states by a list
of occupations and not by a set of them.

Identifying occupation conflicts. After the low-level has
calculated a path for each agent for a CT node N , the high-
level calls the get-occupation function described in Algo-
rithm 1 for each agent, for each time. An occupation conflict
is identified between ai and aj at time t, if for some location
l, both Oi(t) and Oj(t) contain l. N is determined as a goal
node iff no occupation conflicts were found in N .

Resolving occupation conflicts. Let N be a non-goal CT
node selected to be expanded next, and let C = 〈ai, aj , l, t〉
be an occupation conflict in N . C occurred as both agents
(ai and aj) occupy location l at time t (not necessarily by
their heads). There is no valid solution in which both agents
occupy l at time t. Therefore at least one the constraints
〈ai, l, t〉 or 〈aj , l, t〉must be added toN . Note that in MTPF,
a constraint 〈a, l, t〉 means that it is forbidden for agent a to
occupy location l at time t, either by the head or by the tail.
Consequently, we generate two children to N , each having
one of these constraints.

MT-CBS is sound, as it halts only when expanding a CT
node that has no occupation conflicts, and self conflicts are
not being generated by the low-level. MT-CBS is complete,
as it finds a solution if one exists, since splitting CT nodes
never loses any valid solutions. MT-CBS is optimal, as it per-
forms a best-first search on the CT (lowest cost first). Thus,
expanding nodeN means that the cost ofN is a lower bound
on the cost of any other unexplored plan.

Example. Figure 4(a) presents an MTPF problem with
k = 2. The shortest paths of agents a1 and a2 are π1 =
(s1, C, g1) and π2 = (s2, A,B,C, g2), respectively. MT-
CBS calculates these paths on the CT root node by the
low-level (Figure 4(b)). Using get-occupation we get that
O1(3) = (g1, C) and O2(3) = (C,B,A). Thus, the agents
collide by occupying C at time 3. Then, MT-CBS imposes
the occupying constraints 〈a1, C, 3〉 and 〈a2, C, 3〉. After re-
planing for each agent, we expand the node with the lower
cost (the right child) and get a solution with a cost of 7.
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Figure 4: MT-CBS high-level example.

Cost Time (ms)
#Agents k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

4 19.80 20.00 20.02 20.16 6 7 12 16
6 30.64 30.78 31.20 31.62 47 382 811 1,232
8 42.50 43.00 43.62 44.20 124 392 2,433 4,311

10 52.86 53.75 55.08 56.14 629 3,200 4,081 7,830

Table 1: MT-CBS on an 8x8 open grid.

4 Experimental Results

Next, we experiment MT-CBS on different grids, with a dif-
ferent number of agents, and different values of k.

Table 1 shows the average plan cost and planning runtime
for 50 problem instances on an 8x8 grid with 4, 6, 8, and
10 randomly allocated agents, and k = 0, 1, 2, and 3. As
expected, increasing the number of agents also increases the
plan cost and the planning runtime. For example, for k = 1
the cost for 4 agents was 20.00 and the time was 7ms while
for 10 agents the cost was 53.75 and the time was 3,200ms.
For problems with more agents, the plan contains more paths
and thus has a higher cost and it takes more time to find a
conflict-free solution. Moreover, increasing k also results in
higher cost and higher runtime. For 6 agents, for k = 0 the
cost was 30.64 and the time was 47ms, and for k = 3 the
cost increased to 31.62 and the time increased to 1,232ms.
As k increases the agents occupy more locations and causes
more conflicts. Therefore, greater k value increases the cost
and required more time to plan.

We also experiment MT-CBS on a large map, called
brc202d, from the Dragon Age Origins (DAO) video
game, which is available in the movingai reposi-
tory (Sturtevant 2012). We created 50 problem instances
with 10, 20, and 30 randomly allocated agents, and k =
0, 1, 2, and 3. The average plan cost and runtime were mea-
sured and are presented in Table 2. As observed in the exper-
iment of the smaller map, increasing the number of agents
increases the cost and time. Also, to find a plan for greater
k requires more time. The runtime for 20 agents was 395ms
for k = 0 and 8,577ms for k = 3. However, this is hardly
affected the cost of the plan. The average cost of both k = 0
and k = 3 for 20 agents were about 2,489. The larger the
map, the less likely the agents will conflict. Therefore, the
same plan for a lower k value or a plan with minor modifi-
cations may be conflict-free also for a higher k value.

Cost Time (ms)
#Agents k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

10 1,294.8 1,294.8 1,294.8 1,294.8 25 59 110 164
20 2,489.0 2,489.1 2,489.1 2,489.1 395 1,013 3,681 8,577
30 3,851.3 3,851.3 3,848.8 3,848.9 1,010 1,907 5,220 17,159

Table 2: MT-CBS on the brc202d DAO map.
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Figure 5: Difference between MTPF and k-robust example.

5 Different Types of Agents
As mentioned in the introduction, Li et al. (2019) addressed
a MAPF problem that contains large agents that occupy
more than one location each time step. Each agent was rep-
resented by a reference point. By using this point we could
calculate the locations that this agent occupies. However,
this can only be done for agents with specific shapes, and
not for train-agents. Additionally, these agents cannot col-
lide with themselves and cannot make turns, which needed
a special consideration in this paper.

In k-robust plans (Atzmon et al. 2018) each agent can be
delayed up to k times and no collision will occur. To avoid
collisions that might occur from delays, agents cannot cross
the same location in two closer than k times. This creates
some kind of a train-agent occupation. However, by per-
forming a wait action, the size of the occupation changes.
Figure 5 describes this difference. A 1-robust plan exists,
in which one of the agents waits in B and the other agent
passes to the other side. In contrast, MTPF with k = 1 does
not exist; while one of the agents waits in B it also occupies
A. Moreover, in this example, a k-robust plan exists for any
value of k.

In both papers above, the authors used range constraints to
avoid collisions. These constraints were only imposed on the
head of the train (or reference point) to prevent two agents
from occupying the same location at the same time, which in
some cases is similar to our solution. For example, imposing
the range constraints 〈a1, C, [1, 3]〉 and 〈a2, C, [1, 3]〉 on the
head of the agents in Figure 4 creates the same high-level
tree. However, in some cases (as in Figure 5) the future tail
is influenced by the current location of the head as well as by
future actions (as wait actions), and hence, in contrast to the
proposed solution, range constraints might not always work.

In fact, the proposed solution can be easily adjusted for
agents with any size/shape/or inaccurate execution. The only
modification that has to be made is creating for an agent a
proper get-occupation function. Thereby, we can also apply
this solution to problems in which each agent is different.

6 Conclusion and Future Work
In this paper we explored a new type of MAPF solution
suited for long agents (train-agents). We defined an exten-
sion of MAPF for such agents, called: MTPF, and proposed

128



a CBS-based algorithm (MT-CBS) that finds optimal solu-
tions to the extended problem. We have shown experimen-
tally that it is possible to find such solutions, using MT-CBS,
for both small and large domains. Possible directions of fu-
ture work include compiling the problem into other known
NP-hard problems (as done by Surynek et al. 2016) and ad-
justing the solution to agents with other shapes or sizes.
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