
A Profit Guided Coordination Heuristic for Travelling Thief Problems

Majid Namazi,1,2 M. A. Hakim Newton,1 Abdul Sattar,1 Conrad Sanderson2,3

1Griffith University, Australia
2Data61 / CSIRO, Australia

3University of Queensland, Australia

Abstract

The travelling thief problem (TTP) is a combination of
two interdependent NP-hard components: travelling sales-
man problem (TSP) and knapsack problem (KP). Existing ap-
proaches for TTP typically solve the TSP and KP components
in an interleaved fashion, where the solution to one compo-
nent is held fixed while the other component is changed. This
indicates poor coordination between solving the two compo-
nents and may lead to poor quality TTP solutions. For solving
the TSP component, the 2-OPT segment reversing heuristic
is often used for modifying the tour. We propose an extended
and modified form of the reversing heuristic in order to con-
currently consider both the TSP and KP components. Items
deemed as less profitable and picked in cities earlier in the re-
versed segment are replaced by items that tend to be equally
or more profitable and not picked in the later cities. Com-
parative evaluations on a broad range of benchmark TTP in-
stances indicate that the proposed approach outperforms ex-
isting state-of-the-art TTP solvers.

Introduction

Many real-world constraint optimisation problems (Rossi,
Van Beek, and Walsh 2006), such as supply chain man-
agement, comprise multiple interdependent components
(Bonyadi, Michalewicz, and Barone 2013). This interdepen-
dency makes solving these problems very challenging: find-
ing an optimal solution to each component separately does
not guarantee finding an optimal solution to the whole prob-
lem (Michalewicz 2012).

The travelling thief problem (TTP) (Bonyadi,
Michalewicz, and Barone 2013; Polyakovskiy et al.
2014) combines two interdependent NP-hard components:
the travelling salesman problem (TSP) (Gutin and Punnen
2006) and the knapsack problem (KP) (Kellerer, Pferschy,
and Pisinger 2004). In TTP, a thief makes a cyclic tour
through each given city and using a picking plan, picks a
subset of available items into a rented knapsack with limited
capacity. As items are picked up at each subsequent city,
the total profit and weight of the items in the knapsack
increases, while the speed of the thief decreases, thereby
increasing travelling time and hence the cost of renting the
knapsack. The goal in TTP is to simultaneously maximise

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the total profit of the picked items and minimise the
knapsack’s renting cost. TTP is a good proxy for many
real-world logistics problems (Mei, Li, and Yao 2014).

Existing TTP algorithms typically fall into three main
categories (Wagner et al. 2018; Nieto-Fuentes, Segura, and
Valdez 2018): (i) constructive methods, (ii) cooperative
methods, and (iii) full encoding methods. In constructive
methods, such as Insertion (Mei, Li, and Yao 2014) and
Packiterative (Faulkner et al. 2015), after finding an initial
TSP tour, the picking plan for KP is computed by using
scores given to the items based on their profit, weight and
position in the TSP tour. These methods are used in restart-
based algorithms such as S5 (Faulkner et al. 2015) and in
the initialisation phase of more complex methods. In co-
operative methods, such as CoSolver (Bonyadi et al. 2014;
El Yafrani and Ahiod 2015) and CS2SA* (El Yafrani and
Ahiod 2018), the TSP and KP components are solved in
an interleaved fashion. Whenever one component is being
solved, the other component is considered fixed. In full en-
coding methods, such as MATLS (Mei, Li, and Yao 2014),
MMAS (Wagner 2016), and J2B (El Yafrani and Ahiod
2017), TTP is considered as a whole. However, whenever
the TSP component is being solved, the KP picking plan is
considered fixed or changed slightly and randomly. This in-
dicates poor coordination between the methods solving the
two components and may lead to poor quality solutions.

The 2-OPT segment reversing heuristic (Croes 1958) is
often used for modifying the TSP component solution dur-
ing the search. We propose an extended and modified form
of the reversing heuristic in order to explicitly consider both
the TSP and KP components at the same time. Items deemed
as less profitable and picked in cities earlier in the reversed
segment are replaced by items that tend to be equally or
more profitable and not picked in the later cities in the seg-
ment. Comparative evaluations on a broad range of bench-
mark TTP instances indicate that the proposed approach out-
performs the MATLS, S5 and CS2SA* solvers.

Background

A TTP instance has a set {1, . . . , n} of n cities and a set
{1, . . . ,m} of m items. Each item i is located at city li > 1.
Furthermore, each item has weight wi > 0 and associated
profit πi > 0. The distance between each pair of cities j �= j′

is d(j, j′) = d(j′, j). The thief starts a cyclic tour from city 1,

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

140

(a) (b) (c)

Figure 1: x-axis: position in a cyclic tour; y-axis: profitability ratio. (a): Lowest picked profitability ratios and corresponding
prefix-minimum values in a solution found by MATLS (Mei, Li, and Yao 2014) on instance a280 n2790 uncorr 10. (b): Effect
of applying 2-OPT, where the segment between positions 100 and 200 is reversed. (c): Effect of applying the proposed PGCH.

visits each city, and finally returns to city 1. We use a permu-
tation c of n cities to represent the cyclic tour. Given a cyclic
tour c, let ck = j denote that the k-th city is j, and c(j) = k
denote that the position of city j is k; as such, c1 = 1 and
c(1) = 1. Let k̈ = (k mod n) + 1 be the next position after
k in the cyclic tour. The thief rents a knapsack with a weight
capacity W and a rate R of rent per unit time to carry the
picked items. Assume that pi ∈ {1, 0} denotes whether an
item i is either picked or not picked under a picking plan p.
A TTP solution that comprises a cyclic tour c and a picking
plan p is denoted as 〈c, p〉.

We define Wc,p(k) =
∑

c(li)≤k wipi as the total weight of
the items picked from the first k cities of the cyclic tour c.
The thief travels from city ck to the next city ck̈ with a speed
vc,p(k) that decreases as Wc,p(k) increases from one city to
the next. We define vc,p(k) = vmax−Wc,p(k)×(vmax−vmin)/W ,
where vmax and vmin are the given maximum and minimum
speeds, respectively. Given a cyclic tour c and a picking
plan p, the total profit is P (p) =

∑m
i=1 piπi and the to-

tal travelling time is T (c, p) =
∑n

k=1 d(ck, ck̈)/vc,p(k). The
goal of TTP is to maximise the objective function G(c, p) =
P (p)−R×T (c, p) over any possible c and p. In other words,
the goal is to maximise the total profit and minimise the total
renting cost of the knapsack.

We define the profitability ratio for each item i as ri =
πi/wi. We define relations such as an item i is more prof-
itable than item i′, if ri > ri′ or if ri = ri′ and πi > πi′ . The
profitability relations ‘more or equal’, ‘less’, ‘less or equal’,
and ‘least’ are defined analogously.

In many approaches for solving TTP, a segment revers-
ing heuristic known as the 2-OPT move (Croes 1958) is
often used for modifying the TSP component solution. We
define the corresponding 2-OPT(c, k′, k′′) function as fol-
lows. Given a cyclic tour c as well as two positions k′ and
k′′ (with 1 < k′ < k′′ ≤ n), the order of the cities in between
the two positions is reversed to obtain a cyclic tour c′. So
c′k′+k = ck′′−k is obtained for 0 ≤ k ≤ k′′ − k′.

Proposed Coordination Heuristic

In the above definition of TTP, an item picking plan is re-
quired. A greedy constructive heuristic in KP picks items in
a non-increasing order of their profitability ratios (Dantzig

1957). However, the items are dispersed over the cities and
their picking order is restricted by the order of the cities in
the TSP tour. This suggests that no monotonous item picking
ordering should be expected in TTP. Constructive methods
such as Insertion (Mei, Li, and Yao 2014) and Packitera-
tive (Faulkner et al. 2015) combine profitability ratios of the
items with the distances of the respective cities from the end
of the TSP tour.

Considering the above, let us observe the picking orders
of items in the solutions returned by the state-of-the-art
MATLS solver (Mei, Li, and Yao 2014). For a given solution
〈c, p〉, we examine the least profitable item î picked at each
city ck and plot its profitability ratio Rc,p(k) = r

̂i. If no item
is picked at a given city ck, we use Rc,p(k) = 1 + maxi ri,
where maxi ri is the maximum r among all the items, as the
default maximum value.

Fig. 1(a) shows the lowest picked profitability ratios for
the a280 n2790 uncorr 10 benchmark instance (see the Ex-
periments section for details on benchmark instances). From
the start to the end of the cyclic tour, the overall trend is a
decrease in the lowest picked profitability ratios.

To capture the declining trend of the profitability of the
least profitable picked items, we use a prefix-minimum func-
tion (Yu, Lin, and Wang 2008) that returns the profitability
ratio of the least profitable item picked so far in the tour.
For a given TTP solution 〈c, p〉, a prefix-minimum function is
defined as Πc,p(k) = min(Πc,p(k − 1), Rc,p(k)), with Πc,p(1)
= 1 + maxi ri. Fig. 1(a) shows the prefix-minimum values
corresponding to the lowest picked profitability ratios.

Suppose that 2-OPT is applied on a segment between po-
sitions 100 and 200 of the TSP tour shown in Fig. 1(a). The
relevant part of the resultant tour is shown in Fig. 1(b), where
the cities between the two positions are reversed. This results
in lower prefix-minimum values than the original values at
most of the positions in the segment. As such, the overall
trend of the lowest picked profitability ratios in the reversed
segment is rising, in contrast to the original segment and the
whole tour. This reversal in trend can make such a 2-OPT
move counterproductive with respect to the TTP objective
function. As the picking plan is not changed, the trade-off
between profit and renting cost is poor for the low profitable
items picked from the start of the reversed segment. In com-
parison to the original segment, the poor trade-off can result

141

Algorithm 1 Coordinated TTP (CTTP) solver using the proposed PGCH. In TSPSolver(), n is the number of cities in the tour,
while k′ and k′′ indicate the starting and ending point, respectively, of the segment to be reversed. Each segment must have at
least two cities. The position of city 1 is fixed as the first position in the tour.

proc CTTPSolver()
〈c∗, p∗〉 ← ∅ {best solution}
while not global-timeout do

c ← ChainedLKTour()
p ← InitPickingPlan(c)
〈c, p〉 ← TSPSolver(c, p)
p ← KPSolver(c, p)
if G(c, p) > G(c∗, p∗)

〈c∗, p∗〉 ← 〈c, p〉
end while
return 〈c∗, p∗〉

proc TSPSolver(c, p)
〈c∗, p∗〉 ← 〈c, p〉 {best solution}
repeat

for k′ ← 2 to n− 1 do
foreach ck′′ ∈ DelaTriNeighb[ck′] with k′ < k′′ ≤ n
〈c′, p′〉 ← PGCH(c, p, k′, k′′)
if G(c′, p′)−G(c∗, p∗) ≥ α · |G(c∗, p∗)|

〈c∗, p∗〉 ← 〈c′, p′〉 {new best solution}
〈c, p〉 ← 〈c∗, p∗〉

while 〈c∗, p∗〉 has changed
return 〈c∗, p∗〉

proc KPSolver(c, p)
while not local-timeout do

p′ ← RandFlipOneItem(p)
if G(c, p′) ≥ G(c, p)

p ← p′

end while
return p
{KPSolver() runs for the same
length of time as the imme-
diately preceding invocation of
TSPSolver()}

in a lower objective value for the reversed segment, which
in turn can cause the move to be rejected by a solver.

We propose to minimise the renting cost of the knapsack
for picking less profitable items and maximise the profit of
the picked items by raising the prefix-minimum values of the
lowest picked profitability ratios (a max-min strategy). To
accomplish this, we propose an extended and modified form
of the 2-OPT move, denoted as Profit Guided Coordination
Heuristic (PGCH). In addition to reversing the tour segment,
the picking plan is changed by aiming to raise or restore the
original prefix-minimum values. Items deemed as less prof-
itable and picked in cities earlier in the reversed segment are
replaced by items that tend to be equally or more profitable
and not picked in the later cities in the segment. The origi-
nal prefix-minimum values at the given tour positions act as
the reference to decide which items are unpicked and picked.
Applying PGCH on the reversed segment in Fig. 1(b) results
in improved prefix-minimum values shown in Fig. 1(c).

We formally define PGCH(c, p, k′, k′′) as follows. Given
a TTP solution 〈c, p〉 as well as positions k′ and k′′ (where
1 < k′ < k′′ ≤ n), a modified solution denoted as 〈c′, p′〉
is obtained. Initially, p′ is set to p and the cyclic tour c′ is
obtained such that c′k′+k = ck′′−k for 0 ≤ k ≤ k′′ − k′. Then,
for each k′ ≤ k ≤ k′′, each item i : p′i = 1 from city c′k = li
is unpicked (ie. p′i is set to 0) if ri < Πc,p(k). Furthermore,
for each k′′ ≥ k ≥ k′, each item i : p′i = 0 from city c′k = li
is picked (ie. p′i is set to 1) if ri ≥ Πc,p(k), provided that the
total weight of the newly picked items is not larger than the
total weight of the unpicked items in the reversed segment.

Note that if there is a locally increasing trend of the lowest
picked profitability ratios in the chosen tour segment, then
the prefix-minimum values by definition stay the same over
the segment. In such a case, no item is unpicked or picked
by PGCH and hence it acts like a typical 2-OPT move.

Coordinated Solver

The proposed PGCH move is employed in the Coordinated
TTP (CTTP) solver shown in Algorithm 1. In the function
CTTPSolver(), an initial TSP tour is found using the well-
known Chained Lin-Kernighan (CLK) heuristic (Applegate,
Cook, and Rohe 2003) via the ChainedLKTour() function.
For the KP component, the InitPickingPlan() function re-
turns an initial picking plan, which is the best plan (ie. ob-

taining the largest TTP objective value) out of the plans pro-
vided by the Insertion (Mei, Li, and Yao 2014) and Packit-
erative (Faulkner et al. 2015) methods. The initial solution
〈c, p〉 is then refined through the functions TSPSolver() and
KPSolver(). The refined solution replaces the best known so-
lution if it has a larger objective value. The entire process is
iteratively restarted until a global time limit is reached.

The TSPSolver() function behaves as follows. Given a
TTP solution 〈c, p〉, for each position k′, the precomputed
Delaunay triangulation (Delaunay 1934) neighbourhood for
city ck′ is considered, as done by other TSP algorithms
(El Yafrani and Ahiod 2018). For each city ck′′ : k′ < k′′ ≤ n
in the neighbourhood specified by DelaTriNeighb[ck′], the
proposed PGCH move is then applied to obtain a new candi-
date solution 〈c′, p′〉. If the objective value of the new candi-
date solution is sufficiently larger (with a margin empirically
quantified as α = 0.01% of the best solution), it is accepted
as the new best solution. This approach reduces the search
space to more promising solutions, and hence reduces the
amount of time taken by TSPSolver(). After checking all po-
sitions in the tour, the current solution 〈c, p〉 is replaced by
the best solution 〈c∗, p∗〉. As such, only the best PGCH move
takes effect and changes both c and p. If the best solution has
changed, the check of all positions is repeated with the new
current solution. Otherwise, the best solution is returned.

In the KPSolver() function, as done by Faulkner et
al. (2015), the picking state pi is flipped for a randomly
selected item i via the RandFlipOneItem() function. The
change is accepted if it results in a larger objective value.
The KPSolver() function is run for the same length of time as
the preceding invocation of the TSPSolver() function. This
allows equal opportunities for TSPSolver() and KPSolver()
to improve the objective value. Instead of spending more
time in KPSolver(), the whole search is restarted to try more
cyclic tours. This is preferable if a limited amount of time is
available to solve a given TTP (Faulkner et al. 2015).

Experiments

Two sets of experiments were performed. In the first set,
we compare the CTTP solver (employing the proposed
PGCH move) against the following solvers: MATLS (Mei,
Li, and Yao 2014), S5 (Faulkner et al. 2015) and
CS2SA* (El Yafrani and Ahiod 2018). The MATLS and S5

142

Table 1: Performance comparison of the CTTP solver against MATLS, S5 and CS2SA*. Performance is reported in terms of
the relative deviation index (RDI), expressed as percentage, on 3 categories of TTP instances. Category A: 1 item in each
city; profits and weights of items are strongly correlated; knapsack capacity is relatively small. Category B: 5 items in each
city; profits and weights of items are uncorrelated; weights of items are similar to each other; knapsack capacity is moderate.
Category C: 10 items in each city; profits and weights of items are uncorrelated; knapsack capacity is high.

Instance
Category A Category B Category C

MATLS S5 CS2SA* CTTP MATLS S5 CS2SA* CTTP MATLS S5 CS2SA* CTTP

eil76 72.5 74.3 36.4 89.3 96.1 70.9 40.9 89.2 99.3 77.4 66.8 94.6
kroA100 92.9 0.0 18.3 46.9 85.6 11.1 4.7 72.3 98.6 99.2 50.0 100.0
ch130 49.7 77.8 43.1 90.3 95.3 76.2 21.8 95.3 85.0 54.3 16.8 90.7

u159 61.5 80.1 49.4 100.0 86.9 79.6 67.3 94.1 32.2 30.3 23.1 86.8
a280 72.4 94.9 43.4 96.2 73.5 62.0 30.5 97.9 90.4 99.6 37.5 99.4
u574 68.1 91.2 26.3 94.8 85.4 84.0 33.1 99.8 94.2 89.5 39.8 91.8
u724 44.7 85.2 17.6 94.8 59.5 62.8 44.1 82.8 70.0 70.1 27.0 91.2
dsj1000 92.4 2.6 100.0 100.0 55.0 62.8 21.1 89.8 66.7 94.2 49.3 98.7
rl1304 51.8 83.1 45.5 94.7 72.4 70.0 35.0 96.9 80.2 80.4 45.4 97.7

fl1577 54.3 84.3 15.6 90.6 85.9 90.9 57.0 98.4 94.9 92.4 46.3 97.0
d2103 1.1 85.6 69.8 98.5 33.0 37.9 27.6 96.3 28.8 21.7 24.7 95.0
pcb3038 41.3 90.9 19.3 96.7 47.8 68.2 34.0 93.4 72.3 79.6 42.4 90.6

fnl4461 34.6 94.5 6.0 96.3 85.0 89.6 58.3 97.4 94.5 91.9 27.7 97.4
pla7397 70.1 95.8 39.1 96.7 79.2 86.8 49.7 94.8 79.6 74.9 56.0 97.5
rl11849 29.5 93.6 9.4 94.7 59.1 67.7 35.2 86.3 55.5 51.1 23.5 82.0

usa13509 42.2 95.9 38.4 96.3 68.6 70.6 34.4 90.4 45.7 34.6 62.5 83.1
brd14051 44.0 96.5 20.9 95.3 75.4 79.3 53.3 95.1 61.3 65.7 57.5 88.5
d15112 3.0 73.0 22.5 89.8 21.5 32.4 58.0 87.5 33.8 18.1 62.9 84.4

d18512 53.9 97.3 21.6 95.6 82.5 84.1 57.8 93.5 69.4 60.7 53.0 87.2
pla33810 25.6 86.3 28.0 92.7 59.9 48.1 25.2 88.3 74.1 46.6 28.3 88.4

Average 50.3 79.2 33.5 92.5 70.4 66.7 39.5 92.0 71.3 66.6 42.0 92.1

solvers were selected based on their notable performance re-
ported by Wagner et al. (2018), while CS2SA* was selected
due to its recency.

We use a broad subset of benchmark instances introduced
by Polyakovskiy et al. (2014), which are placed into 3 cat-
egories as per El Yafrani and Ahiod (2018). Each category
has 20 instances with a range of 76 to 33810 cities. In cat-
egory A, there is only one item in each city; the profits and
weights of the items are strongly correlated; knapsack ca-
pacity is relatively small. In category B, there are 5 items
in each city; the profits and weights of the items are uncor-
related; the weights of the items are similar to each other;
knapsack capacity is moderate. In category C, there are 10
items in each city; the profits and weights of the items are
uncorrelated; knapsack capacity is high.

The source codes for MATLS, S5 and CS2SA* solvers
were obtained from the respective authors. The same exper-
iment setup was used for all solvers. All solvers were inde-
pendently run on each TTP instance 10 times. Each run had
a standard 10-minute timeout. For each run, we ensured that
each solver computes new initial cyclic tours via the CLK
heuristic whenever required.

For each algorithm on each TTP instance, we use the
relative deviation index (Kim and Kim 1996), defined as
RDI = (Gmean − Gmin) × 100/(Gmax − Gmin), where Gmean is
the mean of the G(c, p) objective values of the 10 runs of
the algorithm on an instance, while Gmin and Gmax are the
minimum and the maximum G(c, p) values, respectively, ob-
tained by any run of any algorithm on the same instance.

The performance of all solvers in terms of RDI is given in
Table 1. In all categories, the CTTP solver outperforms the
other solvers in a vast majority of the instances. This indi-
cates that the explicit coordination in solving the TSP and
KP components, as provided by the proposed PGCH move,
is indeed beneficial.

In the second set of experiments, the effects of the pro-
posed PGCH move are gauged in more detail. Two ver-
sions of Algorithm 1 are used: (i) with the PGCH move,
and (ii) with the 2-OPT move replacing the PGCH move.
3 instances from each category are used as representatives
of small, moderate and large instances.

Table 2 shows the average G(c, p) values obtained by each
of the two heuristics over 10 runs, the average size of the
moves (length of the reversed segment) that improved the
G(c, p) values when applied, and the relative improvement
(in %) by TSPSolver() with respect to G(c, p) obtained by
InitPickingPlan() in Algorithm 1. In all cases, PGCH out-
performs 2-OPT in obtaining higher G(c, p) values.

The improvement is obtained by using larger moves made
in the TSP tour which are accepted due to the corresponding
adjustment of the picking plan. In contrast, such large moves
are typically not accepted when using the 2-OPT move, as
they do not improve the objective value. This is consistent
with the observations made by El Yafrani and Ahiod (2018),
where a TSP solver employing the 2-OPT move resulted in
only minor improvements to the TTP objective value.

143

Table 2: Comparing the effects of PGCH with 2-OPT.
|k′′– k′+1| is the size of the move (length of the reversed seg-
ment). Δ = (Gx − Ginit) × 100/Ginit, where Gx is G(c, p)
obtained by either PGCH or 2-OPT, while Ginit is G(c, p)
obtained by the InitPickingPlan() function in Algorithm 1.

Cat. Instance Move G(c, p) |k′′– k′+1| Δ

A

a280 2-OPT 18446 108 1.81
PGCH 18452 168 5.53

fnl4461 2-OPT 262488 503 0.20
PGCH 262701 901 0.38

pla33810 2-OPT 1886098 1259 1.62
PGCH 1892614 6414 4.43

B

a280 2-OPT 109823 3 0.01
PGCH 115614 174 3.83

fnl4461 2-OPT 1618268 138 0.01
PGCH 1639347 1337 5.13

pla33810 2-OPT 15443569 2443 2.20
PGCH 16167283 8739 7.86

C

a280 2-OPT 428900 4 0.00
PGCH 428926 262 1.81

fnl4461 2-OPT 6543739 165 0.00
PGCH 6561287 1547 2.15

pla33810 2-OPT 57615238 4069 0.89
PGCH 58337984 11540 3.83

Conclusion

Many real-world constraint optimisation problems, such as
supply chain problems, comprise two or more interdepen-
dent components. Compared to solving a single component
(Namazi et al. 2018), the interdependency makes finding
good overall solutions considerably more challenging, as
finding an optimal solution to each component separately
does not guarantee finding an optimal overall solution to the
whole problem. In TTP there are two interdependent com-
ponents: the travelling salesman problem and the knapsack
problem. In many TTP solvers, the typical approach is to
solve the overall problem in an interleaved fashion: when the
solution for one component is changed, the other is fixed.

We have proposed a new heuristic for solving TTPs:
whenever a segment in the TSP tour is reversed, the prefix-
minimum values of the lowest picked profitability ratios are
maintained. Items deemed as less profitable and picked in
cities earlier in the reversed segment are replaced by items
that tend to be equally or more profitable and not picked in
the later cities in the segment. Comparative evaluations show
that the proposed approach leads to considerably better per-
formance than state-of-the-art solvers on a broad range of
TTP benchmark instances.

References

Applegate, D.; Cook, W.; and Rohe, A. 2003. Chained Lin-
Kernighan for large traveling salesman problems. INFORMS Jour-
nal on Computing 15(1):82–92.
Bonyadi, M. R.; Michalewicz, Z.; Przybylek, M. R.; and
Wierzbicki, A. 2014. Socially inspired algorithms for the travelling
thief problem. In Annual Conference on Genetic and Evolutionary
Computation, 421–428.
Bonyadi, M. R.; Michalewicz, Z.; and Barone, L. 2013. The trav-

elling thief problem: The first step in the transition from theoretical
problems to realistic problems. In IEEE Congress on Evolutionary
Computation (CEC), 1037–1044.
Croes, G. A. 1958. A method for solving traveling-salesman prob-
lems. Operations Research 6(6):791–812.
Dantzig, G. B. 1957. Discrete-variable extremum problems. Op-
erations Research 5(2):266–288.
Delaunay, B. 1934. Sur la sphère vide. Izvestia Akademii Nauk
SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7:793–
800.
El Yafrani, M., and Ahiod, B. 2015. Cosolver2B: an efficient lo-
cal search heuristic for the travelling thief problem. In IEEE/ACS
International Conference of Computer Systems and Applications
(AICCSA), 1–5.
El Yafrani, M., and Ahiod, B. 2017. A local search based approach
for solving the Travelling Thief Problem: The pros and cons. Ap-
plied Soft Computing 52:795–804.
El Yafrani, M., and Ahiod, B. 2018. Efficiently solving the Trav-
eling Thief Problem using hill climbing and simulated annealing.
Information Sciences 432:231–244.
Faulkner, H.; Polyakovskiy, S.; Schultz, T.; and Wagner, M. 2015.
Approximate approaches to the traveling thief problem. In Annual
Conference on Genetic and Evolutionary Computation, 385–392.
Gutin, G., and Punnen, A. P. 2006. The Traveling Salesman Prob-
lem and Its Variations. Springer.
Kellerer, H.; Pferschy, U.; and Pisinger, D. 2004. Introduction to
NP-completeness of knapsack problems. In Knapsack Problems.
Springer. 483–493.
Kim, J.-U., and Kim, Y.-D. 1996. Simulated annealing and ge-
netic algorithms for scheduling products with multi-level product
structure. Computers & Operations Research 23(9):857–868.
Mei, Y.; Li, X.; and Yao, X. 2014. Improving efficiency of heuris-
tics for the large scale traveling thief problem. In Simulated Evo-
lution and Learning, Lecture Notes in Computer Science (LNCS),
Vol. 8886, 631–643.
Michalewicz, Z. 2012. Quo vadis, evolutionary computation? In
Advances in Computational Intelligence, Lecture Notes in Com-
puter Science (LNCS), Vol. 7311. 98–121.
Namazi, M.; Sanderson, C.; Newton, M. H.; Polash, M.; and Sattar,
A. 2018. Diversified late acceptance search. In Lecture Notes in
Computer Science (LNCS), Vol. 11320, 299–311.
Nieto-Fuentes, R.; Segura, C.; and Valdez, S. I. 2018. A guided
local search approach for the travelling thief problem. In IEEE
Congress on Evolutionary Computation (CEC), 1–8.
Polyakovskiy, S.; Bonyadi, M. R.; Wagner, M.; Michalewicz, Z.;
and Neumann, F. 2014. A comprehensive benchmark set and
heuristics for the traveling thief problem. In Annual Conference
on Genetic and Evolutionary Computation, 477–484.
Rossi, F.; Van Beek, P.; and Walsh, T. 2006. Handbook of Con-
straint Programming. Elsevier.
Wagner, M.; Lindauer, M.; Mısır, M.; Nallaperuma, S.; and Hutter,
F. 2018. A case study of algorithm selection for the traveling thief
problem. Journal of Heuristics 24(3):295–320.
Wagner, M. 2016. Stealing items more efficiently with ants: a
swarm intelligence approach to the travelling thief problem. In
Swarm Intelligence, Lecture Notes in Computer Science (LNCS),
Vol. 9882, 273–281.
Yu, H.-I.; Lin, T.-C.; and Wang, B.-F. 2008. Improved algorithms
for the minmax-regret 1-center and 1-median problems. ACM
Transactions on Algorithms (TALG) 4(3):36.

144

