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Abstract
Weighted A∗ (WA∗) is a widely used algorithm for rapidly,
but suboptimally, solving planning and search problems. The
cost of the solution it produces is guaranteed to be at most
W times the optimal solution cost, where W is the weight
WA∗ uses in prioritizing open nodes. W is therefore a sub-
optimality bound for the solution produced by WA∗. There
is broad consensus that this bound is not very accurate, that
the actual suboptimality of WA∗’s solution is often much less
than W times optimal. However, there is very little published
evidence supporting that view, and no existing explanation
of why W is a poor bound. This paper fills in these gaps in
the literature. We begin with a large-scale experiment demon-
strating that, across a wide variety of domains and heuristics
for those domains, W is indeed very often far from the true
suboptimality of WA∗’s solution. We then analytically iden-
tify the potential sources of error. Finally, we present a practi-
cal method for correcting for two of these sources of error and
experimentally show that the correction frequently eliminates
much of the error.

1 Introduction
In bounded suboptimal search, a bound β ≥ 1 is given along
with the problem to be solved, and the cost, C, of the solu-
tion returned must be no more than βC∗, where C∗ is the
problem’s optimal solution cost. In other words, β is an up-
per bound on the allowable suboptimality, C/C∗.

The most popular algorithm for bounded suboptimal
search, and the focus of our paper, is Weighted A∗, WA∗ for
short (Pohl 1970). β is given to WA∗ in the form of a weight
W that WA∗ uses in its function f(s) = g(s) +Wh(s) for
ordering nodes on the Open list. The solutions returned by
WA∗ are guaranteed to cost no more than WC∗ if the heuris-
tic h is admissible (p. 88 (Pearl 1984), (Davis, Bramanti-
Gregor, and Wang 1988; Thayer and Ruml 2008)).

Although it is widely believed that W is often a very loose
upper bound on C/C∗ for WA∗’s solutions, published data
supporting this belief is scarce and limited in its variety. The
first contribution of this paper (Section 4) is to provide com-
pelling evidence supporting this belief via a large-scale ex-
periment involving six different domain-independent heuris-
tics (or combinations of them), and 568 problems drawn
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from 42 domains from the International Planning Competi-
tion1 (IPC), and 400 problems from three non-IPC domains.

We then identify four potential causes of W being a loose
upper bound (Section 5). For two of these we present a prac-
tical method to correct for the error they introduce. This
method is based on the actual cost of the solution produced
for the given problem and other information that is only
available after the problem has been solved, so it provides
a “post hoc” suboptimality bound, in contrast to an a priori
bound like W . We call this bound F.

Finally (Section 6), we repeat the large-scale experiment
of Section 4 to examine how much of W ’s looseness has
been eliminated by correcting for these errors.

2 Preliminaries
We assume the unweighted heuristic h is admissible, but
not necessarily consistent. We allow h(s) = 0 for non-goal
states and action costs of 0. We assume C∗ > 0 and W ≥ 1.
f(s) denotes the unweighted f -value of state s, i.e. g(s)+

h(s). The weighted f -value, fW (s), is g(s) +Wh(s).
WA∗ is an iterative algorithm and certain key quantities

can change from one iteration to the next. For example, fW
min

is the minimum weighted f -value of the nodes on Open at
the beginning of an iteration. Other quantities defined over
the nodes on Open at the beginning of an iteration are:

• gmin, the minimum g-value,

• g(s), the g-value of state s, and

• nopt (defined below, Section 5).

All these should have the iteration number as part of their
notation but we found this cumbersome. However, when
several of these quantities co-occur in a formula, they are
referring to the respective quantities on the same iteration.

3 Experimental Setup
Our experiments aim to measure the accuracy of W and the
F bound across a wide range of domains and heuristics. We
used W ∈ {1.2, 1.5, 2, 4, 8, 16}. The experiments were run
on Intel(R) Xeon(R) CPU X3470 @ 2.93GHz machines. We
used a time limit of 1800s and a memory limit of 8Gb.

1http://ipc.icaps-conference.org
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Our primary experiments began with the 747 IPC prob-
lems solved optimally by the lite-enhanced DM-HQ algo-
rithm (Fan, Holte, and Mueller 2018) from 39 domains and
the 110 solved problems from 6 domains in the 2018 IPC op-
timal track.2 Only 568 of these problems (538 from pre-2018
IPCs and 30 from the 2018 IPC) were solved within our
time and memory limits by all combinations of W -values
and heuristics. The figures and discussion in this paper are
based only on these commonly solved problems. We used
Fast Downward’s implementation of WA∗ for experiments
on these domains (Helmert 2006).

The heuristics used for the IPC problems are high-quality
admissible domain-independent heuristics from the plan-
ning literature – LM-CUT (Helmert and Domshlak 2009),
IPDB (Haslum et al. 2007),3 CEGAR (Seipp and Helmert
2013), OPERATOR-COUNTING (Pommerening et al. 2014),4
POTENTIAL (Seipp, Pommerening, and Helmert 2015),5
and a method for combining heuristics, Saturated COST-
PARTIONING (Seipp, Keller, and Helmert 2017).6 IPDB,
CEGAR, and POTENTIAL are guaranteed to be consistent,
but LM-CUT and OPERATOR-COUNTING are not (the lat-
ter due to its internal use of LM-CUT).

As secondary experiments, we used the 15-puzzle with
the Manhattan Distance heuristic and the 100 standard test
instances (Korf 1985), the 15-pancake puzzle with the GAP
heuristic (Helmert 2010) and two weakened versions of it,
GAP-1 and GAP-2 (Holte et al. 2016), and 200 randomly
generated instances, and an industrial vehicle routing prob-
lem (VRP) with the Minimum-Spanning-Tree heuristic and
100 randomly generated instances. For these we used our
own implementations of WA∗. All of these problems were
solved by WA∗.

4 How Far is C/C∗ from W in Practice?
Almost no data has been published documenting how in-
accurate W is as an estimate of the suboptimality (C/C∗)
of WA∗’s solutions. One of the rare exceptions is Table 2
in (Korf 1993), which shows the average solution cost pro-
duced on 100 15-puzzle instances as W varies from 3 to 99.
Concerning WA∗ and the other algorithms he is studying,
Korf observes “for small values of W , they produce nearly
optimal solutions whose lengths grow very slowly with W .”

Figure 1 shows that Korf’s observations hold across a
broad range of domains and heuristics. Boxplots7 show the
distribution of C/C∗ values for our 568 IPC problems for

2We selected the 7 domains without conditional effects,
since some heuristics do not handle them. Then, we selected
problems for which the upper and lower bounds were equal
(https://bitbucket.org/ipc2018-classical/domains/src/default/),
since we need the optimal solutions costs for computing C/C∗.
petri-net-alignment did not have these values updated, so
we did not use it.

3IPDB was given 30 seconds to build its pattern database.
4We used constraints LM-CUT and state equations.
5Potentials for all facts, optimized for a high average heuristic

value on all states (Seipp, Pommerening, and Helmert 2015).
6We have used their best option: diverse saturated cost parti-

tioning over pattern database and Cartesian abstraction heuristics.
7The lower and upper edges of the box represent the first (Q1)

POTENTIAL

VRP

Figure 1: C/C∗ as a function of W using the POTENTIAL
heuristic (IPC domains) and for the VRP domain.

all values of W . This figure is for a specific heuristic – PO-
TENTIAL (IPC domains) – and a specific non-IPC domain
(VRP). The other C/C∗ plots are very similar except as
noted below. The key features for IPC domains are:

• In all cases at least 25% of the problems are solved opti-
mally.

• For all heuristics except CEGAR, the median value of
C/C∗ is 1.0 for all values of W . For CEGAR, the median
is 1.0 for W = 1.2 and rises very slowly as W increases
to a maximum of 1.1 for W = 16.

• For all values of W , C/C∗ is less than 1.15 on 75% of the
problems for all heuristics except for CEGAR, for which
the 75th percentile is 1.3.

• C/C∗ is almost always less than
√
W . In particular: 73

of the 568 C/C∗ values are greater than
√
1.2 when

W = 1.2, 47 are greater than
√
1.5 when W = 1.5, 25

are greater than
√
2 when W = 2, 8 are greater than

√
4

when W = 4, 3 are greater than
√
8 when W = 8, and

none is greater than
√
16 when W = 16.

The results in the non-IPC domains are a bit different than
in the IPC domains. The results shown in Figure 1 for VRP
are representative of the distributions for the other non-IPC
domains, with the 15-puzzle being somewhat worse, and the
Pancake puzzle being somewhat better for all of its heuris-
tics. In contrast to the IPC domains, the median, and even
the lower quartile (bottom of the boxes), is greater than 1.0
for W ≥ 2. On the other hand, the largest values of C/C∗

and third (Q3) quartiles of the data, respectively. The whisker
extends above the box to the highest data point below Q3 +
1.5(Q3−Q1). Data points beyond the whisker are shown individu-
ally. The solid horizontal line (orange) inside the box is the median.
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are smaller in the non-IPC domains than in the IPC domains
for all values of W .

The observations in these experiments are consistent with
Korf’s and others’ (Thayer and Ruml 2008), and provide
compelling evidence that W is a poor estimate of the sub-
optimality of WA∗’s solutions, especially when W is large.

5 Why is W a Loose Bound?
Although it is possible to construct examples in which
C/C∗ = W , we have just seen that this virtually never hap-
pens in practice. In this section, we identify potential causes
of this by examining a typical proof that C/C∗ ≤ W . This
proof uses the fact that, at the beginning of any iteration, for
any optimal path P from start to any unclosed state – in
particular, any goal state – there exists a node, nopt ∈ P ,
on Open such that g(nopt) = g∗(nopt) (Lemma 1 (Hart,
Nilsson, and Raphael 1968)).8 Then

fW
min ≤ fW (nopt) = g(nopt) +Wh(nopt) (1)

= g∗(nopt) +Wh(nopt) (2)
≤ g∗(nopt) +Wh∗(nopt) (3)
≤ Wg∗(nopt) +Wh∗(nopt) (4)
= W (g∗(nopt) + h∗(nopt)) (5)
= WC∗.

On WA∗’s final iteration, fW
min = C, so this derivation es-

tablishes that C/C∗ ≤ W .
One reason W can overestimate the true value of C/C∗

is that this derivation applies to fW
min on every iteration, it is

not specific to the last iteration.9 A tighter bound on C/C∗
will almost always be obtained by considering the largest
value of fW

min that occurred throughout WA∗’s execution. We
call this value F . It is easily computed during search and, as
we shall see, it can be used to define a much better bound
for C/C∗.

The other sources of potential error (overestimation) in
this derivation are the steps that involve an inequality:
lines (1), (3), and (4). We do not see any practical way of
correcting for the error introduced by line (1), since nodes
on an optimal solution path cannot be identified during or
even after WA∗’s search. Furthermore, a step introducing
nopt seems inevitable in any derivation of a relation between
C and C∗, since it is via nopt that C∗ eventually emerges in
the derivation.

The error introduced in line (3) is caused by the inaccu-
racy of the heuristic function h. Again, we see no practical
way of correcting this error based on the information avail-
able during or after WA∗’s search. And similar to the intro-
duction of nopt in line (1) we see no way of avoiding intro-
ducing h∗(nopt) in deriving a relation between C and C∗.

The situation is different with the error introduced in
line (4). Multiplying g∗(nopt) by W has no intrinsic justifi-
cation; it is only done to allow the equation to be simplified.
A better way to proceed is as follows (the first few steps are
the same as before and are not shown):

8Hart et al. proved this lemma in the context of A* but it applies
much more broadly, including to WA∗.

9Theorem 2 by Thayer and Ruml (2008) also makes this obser-
vation but they do not exploit it in any way.

Figure 2: The F bound is a much better bound than W .

fW
min ≤ g∗(nopt) +Wh∗(nopt)

= g∗(nopt) +W (C∗ − g∗(nopt))

= WC∗ − (W − 1)g∗(nopt)

= WC∗ − (W − 1)g(nopt)

≤ WC∗ − (W − 1)gmin.

This derivation replaces the potentially very large error
introduced in the first derivation by multiplying g∗(nopt) by
W with the error seen in the final line: replacing g(nopt) by
gmin. In preliminary experiments this error was 0 more than
50% of the time and was rarely a significant fraction of the
total error.

As noted above, this derivation is true for fW
min on all it-

erations, and therefore we have

F ≤ WC∗ − (W − 1)gmin

where gmin is the smallest g-value on Open at the begin-
ning of an iteration when a node n with f(n) = F was re-
moved from Open. It is interesting to see an additive correc-
tion term for F ≤ WC∗ that will only be 0, when W > 1,
in the rare situation that gmin = 0. With some simple al-
gebraic rearrangement, this inequality gives the following
suboptimality bound for WA∗, which we call the F bound:

C

C∗ ≤ CW

F + (W − 1)gmin
.

To see how accurate the F bound can be, consider Fig-
ure 2 when W = 10. The heuristic values here are con-
sistent and gmin is 0 on all iterations. The optimal path
is through B, and its cost is C∗ = 20. B’s large h-value
prevents WA∗ from expanding B and finding the optimal
path. Instead, WA∗ returns the path through A, costing 22.
F = max{f(S), f(A), f(G)} = 182, so the F bound is
(22 · 10)/182 = 1.2, which is very close to the actual value
of C/C∗ (22/20 = 1.1) and almost an order of magnitude
smaller than W . We have experimentally observed that com-
puting the F bound results in a negligible overhead.

6 Experimental Evaluation
The F bound corrects for two sources of overestimation in
using W as a bound on C/C∗. The question addressed by
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the experiments in this section is, how effective are those
corrections? Do they eliminate much of the overestimation?
We will answer this question by evaluating the accuracy of
the F bound relative to the accuracy of W as an upper bound
on C/C∗.

To quantify the accuracy of the F bound we must take into
account how its value, vF , on a given problem compares to
the minimum and maximum possible values on the problem
(C/C∗ and W respectively). We denote the accuracy of the
F bound’s value by ρ, defined as10

ρ =
log(vF )− log(C/C∗)
log(W )− log(C/C∗)

.

The denominator is the distance, in log space, between the
F bound’s minimum and maximum possible values, and the
numerator is the distance in log space between the F bound’s
actual value on a problem (vF ) and its minimum possible
value. ρ is always between 0 and 1 and represents the F
bound’s distance from C/C∗ as a fraction of W ’s distance
from C/C∗. A smaller value means better accuracy.

We consider ρ > 0.5 to be a poor score since it means vF
is closer to W , in log space, than it is to C/C∗. We consider
ρ ≤ 0.25 to be a good score. For example, if W = 32 and
C/C∗ = 2, vF = 8 corresponds to ρ = 0.5 while vF = 4
corresponds to ρ = 0.25.

Figure 3 has a boxplot for ρ (y-axis) as a function of W
(x-axis) for the IPDB and POTENTIAL heuristics. The re-
sults for other heuristics are similar to the IPDB ones, except
for the COST-PARTIONING heuristic where they are better.
The POTENTIAL heuristic results are uniformly poorer than
the rest. The main trends for all heuristics except for PO-
TENTIAL are:

(1) The accuracy of the F bound improves as W increases.
All aspects of the distribution improve: the median, the
75th percentile, (top of the box), the upper whisker, and
even the outliers. These all decrease as W increases. This
is also true in the non-IPC domains, except for VRP where
the distributions only worsen from W = 1.2 to W = 1.5.

(2) In Figure 3 the boxes are seated on ρ = 0 for W ≥ 2,
meaning the F bound perfectly predicts C/C∗ for at least
25% of the problems when W ≥ 2. This holds for all
heuristics except POTENTIAL. In the non-IPC domains,
the F bound does not provide any perfect prediction ex-
cept for a single Pancake puzzle problem with the GAP
heuristic.

(3) For all heuristics except the POTENTIAL heuristic, the me-
dian values of the F bound are “good” for all values of
W ≥ 2. When using COST-PARTIONING, in 50% of the
problems the prediction is perfect when W ≥ 2. In the
non-IPC 15-puzzle and VRP domains, the median values
of the F bound are “good” when W ≥ 8. For the Pancake
puzzle the median value is “good” when W ≥ 4 if the
GAP heuristic is used, when W ≥ 8 if the GAP-1 heuris-
tic is used, and only when W ≥ 16 if the GAP-2 heuristic
is used.

10If W = C/C∗ then we define ρ to be 0.

IPDB

POTENTIAL

Figure 3: Boxplots showing the accuracy (ρ) on the y-axis
of the F bound as a function of W (x-axis) for the IPDB
and POTENTIAL heuristics. The horizontal lines that span
the entire x-axis indicate our thresholds for “good” (ρ ≤
0.25) and “bad” (ρ ≥ 0.5) ρ values.

(4) The distributions are very broad, covering the entire range
of possible ρ values for W ≤ 4. With the OPERATOR-
COUNTING, IPDB, and COST-PARTIONING heuristics
the 75th percentile (top of each box) is a “good” ρ value
for larger values of W . This is also true in the non-IPC
domains for W = 16. The tails of the distributions stretch
into the region of “poor” ρ values for all heuristics and W
values in the IPC domains but only when W ≤ 4 for the
non-IPC domains.

7 Conclusions
In this paper we have presented compelling evidence that W
is, indeed, almost always a very loose bound on the subopti-
mality (C/C∗) of WA∗’s solutions, especially for larger W .
We have also identified the causes of this looseness and pre-
sented a practical method, the F bound, for correcting for
two of them once WA∗ has finished executing. Finally, we
examined how effective these corrections are, i.e. how much
more accurately C/C∗ is predicted by the F bound than by
W . Our overall conclusion is that the corrections embod-
ied in the F bound are very effective (the F bound predicts
C/C∗ much more accurately than W ) for any of the heuris-
tics we tested when W ≥ 8. However, there do exist prob-
lems for which the F bound’s predictions are poor, with the
number of such problems decreasing as W increases.

We do not claim that the F bound is the best possible post
hoc suboptimality bound for WA∗. Indeed, we know it is not
when the heuristic being used is consistent, because we have
proven, in that case, that the F bound is dominated by the
largest unweighted f -value on WA∗’s open list upon termi-
nation. Our aim in introducing the F bound is to show that
it is possible to explain, and directly correct for, a great deal
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of W ’s looseness as a suboptimality bound for WA∗.
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