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Abstract

Single-agent pathfinding on grid maps can exploit online
compiled knowledge produced offline and saved as a Com-
pressed Path Database (CPD). Such a knowledge is distilled
by performing repeated searches in a graph, where each node
corresponds to a distinct grid cell, typically by algorithms
such as Dijkstra’s. All-pairs shortest paths (APSPs) are com-
puted, and the first move along a shortest path is persistently
stored in the CPD. This way, an optimal move can efficiently
be retrieved for any pair of source and target cells that is
considered while the agent is navigating. However, a CPD
supports a static grid, that is, a grid where each cell is per-
manently either traversable or non-traversable. Our work in-
stead assumes that the cells in the map can undergo dynamic
changes. Reasoning about the altered map would require a
new CPD. As creating it from scratch is computationally ex-
pensive, we present techniques to repair an existing CPD. We
prove that using our technique leads to correct and optimal
solutions. Experiments demonstrate the benefits of our ap-
proach. When a single obstacle of a given size is added or
removed, the repair costs often are a small fraction of a re-
computation from scratch.

Introduction

Pathfinding (or path planning) in a plane is a core AI
task, with several application domains, such as robotics
(Lee and Yu 2009; Algfoor, Sunar, and Kolivand 2015),
and computer games (Sturtevant 2007; Botea et al. 2013;
Algfoor, Sunar, and Kolivand 2015). The problem to be
solved is to guide a single-agent navigation from a source
to a target on a fully known, static map. Such a map is often
discretized into a grid map: a partitioning into atomic square
cells, each of which is either traversable or non-traversable.
In common grid pathfinding the agent can move only along
4 or 8 directions, that is, it can turn either at modulo 90
degrees or 45 degrees. A grid map can be represented as
a weighted undirected graph, where each node corresponds
to a traversable cell of the grid, and each edge connects two
adjacent traversable cells.

Computing optimal (length-minimal) paths and comput-
ing the first moves of a minimal path are challenges faced in
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the Grid-based Path Planning Competition1 (GPPC) (Sturte-
vant 2014).

Compressed Path Databases (CPDs) (Botea 2011;
Strasser, Harabor, and Botea 2014; Strasser, Botea, and
Harabor 2015; Salvetti et al. 2018) achieve a state-of-the-
art speed in optimal pathfinding on gridmaps with an ap-
proach that avoids graph searches during the computation
of a path. In a preprocessing stage, all-pairs-shortest-paths
(APSPs) data are computed with repeated calls to Dijkstra’s
algorithm (Dijkstra 1959), one for each node on the map.
The APSP data are compressed into a CPD. After the pre-
computation, a CPD provides fast an optimal move from any
node s towards any target node t.

However, a CPD supports a static grid, that is, a grid
where each cell is permanently either traversable or non-
traversable. When obstacles on a map change dynamically,
a standard CPD precomputation needs to start from scratch.
This is slow, especially on large maps, as preprocessing in-
volves many calls to Dijkstra’s algorithm. Preprocessing can
be parallelized, but the number of CPU cores available often
is very limited.

We introduce an approach to dynamically repair a CPD
when obstacles appear or disappear from the map. The key
idea is to identify a subset of nodes around the changed cells,
with the property that running Dijkstra’s algorithm for each
of those nodes as a source is sufficient to repair the CPD.
Often, such a subset of nodes is much smaller than the en-
tire graph, resulting in important speedups compared to a
recomputation from scratch. As our technique relies on sep-
arate Dijkstra runs, it can also benefit from parallelization.

As mentioned earlier, we assume that the grid maps are
undirected (i.e., traveling is allowed on both directions along
a given edge). This is a very common assumption in the lit-
erature. It allows us to compute, with one single Dijkstra
search, two types of moves: the first optimal move from the
source node to every other node (target), and the first optimal
move from each target towards the source node. The ability
to compute both types of moves is key in reducing the CPD
repair effort, as illustrated in the fourth section.

The contribution of the paper is threefold. Firstly, we
present a study of CPD repairing to react to dynamic
changes in the map. To the best of our knowledge, this topic

1http://movingai.com/GPPC/index.html
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has never been investigated before in the literature. Sec-
ondly, we formally prove sufficient conditions that guarantee
that a partial repair results in an optimal and correct CPD.
That is, our repaired CPDs are free from faults such as pro-
viding suboptimal paths, running into an obstacle and, very
importantly, running into infinite loops. Finally, we provide
experimental evidence that CPD repairing can convincingly
outperform a recomputation from scratch.

Related Work

In gridmap pathfinding, many approaches rely on a graph
search performed online, while looking for a path. Graph
search, however, can be expensive, visiting many more
nodes than a set of nodes placed on an optimal path. Re-
search efforts have been spent in identifying better heuristics
to guide the search (Sturtevant et al. 2009), which is usu-
ally performed with A∗ (Hart, Nilsson, and Raphael 1968)
or variants of it, and reducing the size of the searched
portion of the graph (Harabor and Botea 2010; Harabor
and Grastien 2011; Uras, Koenig, and Hernández 2013;
Rabin and Sturtevant 2016), while preserving the optimal-
ity of the resulting path.

Dynamic map changes are related to moving obstacles on
maps. Jaillet and Simeon (2004) construct a cycle-free map
for the static part of the environment. If, in a query, an edge
crucial for finding a path intersects with a moving obsta-
cle, a variant of the Rapidly-exploring Random Trees (RRT)
approach (Lavalle and Kuffner 2000) is used to reconnect
the vertices of this edge. If this procedure fails, an attempt
is made to reconnect the two disconnected components of
the map by additional global sampling. The method aims at
solving the problem in the query phase rather than in the
preprocessing phase.

Nieuwenhuisen, van den Berg, and Overmars (2007)
present an algorithm that creates a robust map in the prepro-
cessing phase. Such an algorithm is based on the observation
that the motion of the moving obstacles is often restricted to
some confined area. Examples of such obstacles are a door
that can be opened or closed, or a chair whose position is
bounded to a room. van den Berg et al. (2005) introduce
an algorithm that assumes that a moving obstacle has a pre-
defined set of potential placements. The work presented in
this paper does not make any assumption about the positions
where an obstacle can be added or removed.

A common approach used for efficient path planning in
dynamic environments involves modeling moving obstacles
as static objects with a small window of high cost around
the beginning of their projected trajectories (Likhachev and
Ferguson 2009). By avoiding the additional time dimension,
these approaches can efficiently find paths that do not collide
with any obstacles in the near future. However, they suffer
from severe sub-optimality or even incompleteness due to
the uncertainty of moving obstacles in the future.

Sturtevant (2011) uses incremental repairing for a sparse
representation of three-dimensional grids. Repairing prepro-
cessed data, in response to dynamic changes, has also been
addressed in transportation networks. See (Bast et al. 2015)
for a survey.
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Figure 1: Grid map and the corresponding graph.

Vemula, Muelling, and Oh (2016) successfully use the no-
tion of adaptive dimensionality in high-dimensional motion
planning, while such a notion is not adopted in the context
of path planning in dynamic environments.

Background

The result of dividing a plane navigation environment into
N × M square cells is called a grid map. Each cell must
be either fully traversable or fully non-traversable. If the
agent is able to move only along four straight directions
(North, East, South, West), the grid map is 4-connected; if
instead the agent can move also along the diagonal direc-
tions (North-East, North-West, South-East, South-West), the
grid map is 8-connected. Moves involving non-traversable
cells are disallowed.

A grid map has an associated graph, where each
traversable cell is a node of the graph, and adjacent cells
are adjacent nodes, connected with edges. For a 4-connected
map, the out-degree of a node in the corresponding graph is
up to 4, while it is up to 8 in case of an 8-connected map.
Figure 1a shows a small grid map, where the black cells are
non-traversable, and Figure 1b the graph obtained after its
conversion.

Consider a 2 × 2 area on an 8-connected grid. If two di-
agonal cells are traversable, but the other two are blocked,
no diagonal move is defined for the traversable cells. For ex-
ample, in Figure 1a, if cell 5 were black, no diagonal move
could exist between cells 4 and 6, as an agent would have no
room to squeeze through two diagonally-adjacent obstacles.

Observe that Figure 1 allows a diagonal move such as 4
to 6, despite the fact that one nearby cell (a cell adjacent to
both cells 4 and 6) is blocked. Some works in the literature
allow such a diagonal move near an obstacle, and some do
not. Our approach works with either assumption.

The grid maps often are assumed to have uniform costs:2
the cost of every straight move from a (traversable) cell to
a neighbor (traversable) cell is 1, whereas the cost of ev-
ery diagonal move is

√
2. Such costs become the weight of

the edge of the undirected graph corresponding to the map.
Once such a graph G has been built, the preprocessing phase,
meant to offline knowledge compilation, is carried out. The
construction of the CPD is performed in two steps repeated
for each node, encompassed by Algorithm 1: shortest-path
computations, and data compression.

2CPDs work both with and without such an assumption.
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1 2 3 4 5 6 7
1 * e e s s s s
2 w * e sw sw sw sw
3 w w * w w w w
4 n ne ne * s se se
5 n n n n * e e
6 nw nw nw nw w * e
7 w w w w w w *

(a) Uncompressed

1 1/e 4/s
2 1/w 3/e 4/sw
3 1/w
4 1/n 2/ne 5/s 6/se
5 1/n 6/e
6 1/nw 5/w 7/e
7 1/w

(b) Compressed with RLE

Figure 2: First-move matrix.

Algorithm 1 CPD, preprocessing phase

1: procedure CPD(G = (V,E))
2: for each n ∈ V do
3: R(n) ← Dijkstra(n)
4: C(n) ← Compress(R(n))

Repeated calls to Dijkstra’s algorithm (line 3 of Algo-
rithm 1) is used for computing APSPs, where the source
node ranges over all the nodes in the graph (line 2). The
original Dijkstra’s algorithm returns the distance from the
source to every target. The version of Dijkstra’s algorithm
exploited for building the CPD, introduced in (Botea 2011),
not only returns the distance, but also provides all the first
(optimal) moves on the shortest paths from the source to any
target. The first move on a shortest path from a source node
n to any target node in graph G = (V,E) is stored in a single
row R(n) of a |V | × |V | matrix, called a first-move matrix.
After that, row R(n) is compressed (line 4), by adopting, for
instance, the Run-Length-Encoding (RLE) technique, which
allows to compactly represent strings (Strasser, Harabor, and
Botea 2014; Strasser, Botea, and Harabor 2015).

Given a string of symbols, a run consists of a maxi-
mal solid block repetition of the same symbol. String α =
aaabbaaccc, for instance, has four runs: aaa, bb, aa and ccc.
RLE encodes it as 1/a, 4/b, 6/a and 8/c. Each compressed
run indicates the starting position and the symbol contained
in the run.

Example Consider the grid map shown in Figure 1a,
where | V |= 7. After having built the search graph relevant
to this map, depicted in Figure 1b, the first-move matrix m
is computed (Figure 2a). Optimal moves are represented as
follows: e = East, se = South-East, s = South, ... ne = North-
East. For instance, m[1, 4] = s because going South is an
optimal move from 1 towards 4. All elements m = [i, i] are
“don’t care” symbols ∗, since no move is needed to go from
a cell to itself. The (uncompressed) matrix has 7 × 7 = 49
elements, 7 of which are “don’t care” symbols ∗.

Each ∗ symbol is replaced with an element that is suitable
to achieve a better compression. For example, in row 3 of m,
by replacing the asterisk with w we obtain only one run. The
compressed first-move matrix, shown in Figure 2b, includes
16 runs altogether, a number which is smaller than the size of
the original first-move matrix. Each run indicates the starting
node and the first move. For instance, run 1/e in the first
row refers to the starting node 1 and its first move, East. The

s

t

(a) Grid map

O

s

t

(b) The same grid with an added obstacle

Figure 3: Two grid maps differing for an obstacle cell.

compressed first-move matrix is precisely the CPD.
Definition 1. (Distance) The distance between nodes A and
B is the cost of the shortest path from A to B (or, dually,
from B to A) in the considered graph, denoted d(A,B) or,
indifferently, d(B,A).

We recall here two well-known properties of graphs.
Property 1. (Triangle inequality) In a graph G where the
cost of every edge is strictly positive, for every triple of nodes
(A, B, C), the sum of the distances between any two pairs of
nodes is greater than or equal to the distance of the remain-
ing pair, namely d(A,B) + d(B,C) ≥ d(A,C).
Property 2. (Acyclicity of optimal paths) In a graph where
the cost of every edge is strictly positive, every optimal path
is cycle-free.

Repairing CPDs

In the following, suffix old will be used to denote an en-
tity (grid, graph, CPD, distance, etc.) before any dynamic
change, and suffix new to denote the same entity after the
dynamic change has occurred. In this work we focus on dy-
namic changes of two types: adding an obstacle and remov-
ing an obstacle of a given size.

Consider, for example, the 4-connected grid map in Fig-
ure 3a, where the cells marked with s and t are the source
and the target, respectively. The optimal moves from s to
t are North and East, and either of them can be chosen to
be stored in the CPD. In our example, we assume that the
chosen move is North.

After an obstacle has been added onto the map (it is the
single cell marked with O in Figure 3b), the move North
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from s to t is not available any more. The example shows
that, after a change in the map, some repairs are needed in
order for CPDnew to guarantee the optimality of every path
in the new graph.

We aim at finding all the nodes s for which there exists
some pair (s, t) whose first move in CPDold is not optimal
any more, and apply to such nodes what we call a CPD re-
pair. For each and every one of such nodes, a CPD repair
consists in replacing the moves, that were optimal in the old
graph, with moves that are optimal in the new graph.

Given a set of nodes X , this being a subset of the nodes
of the old graph, the CPD is repaired by Algorithm 2.

Algorithm 2 Repair CPD, given a list of nodes X
1: procedure REPAIRCPD(X )
2: for each node x ∈ X do
3: Dijkstra(x)
4: SingleSourceRepair(x)

In line 3, Dijkstra’s algorithm is run for a source node x.
The implemented version of Dijkstra’s algorithm returns not
only the distance between x and all the other nodes, but also
the first optimal moves.

In a standard CPD, a Dijkstra run is used to get first moves
from the source towards any target, but not first moves from
the targets towards the source at hand.

The version of Dijkstra’s algorithm implemented in our
repair approach retrieves first optimal moves in both direc-
tions: from the source towards the targets, and from the tar-
gets towards the source. This is a key idea that allows us in
the end to repair a CDP with only a small number of calls
to Dijkstra’s algorithm. An optimal first move from a target
towards the source is obtained as follows: we keep track of
the last move along an optimal path from the source to the
target, and take its opposite (e.g., if the last move is North,
the opposite move is South).

Given an undirected graph, the opposite of the last move
of an optimal path from s to t is guaranteed to be the first
move of an optimal path from t to s. This is why we rely
on the assumption that the input gridmap is undirected. As
said in the introduction, this is a very common property of
gridmaps considered in the literature and in practice.

When several optimal moves exist from one node towards
another (i.e., from the current node towards a target, or from
a target towards the current node), the Dijkstra algorithm
can record them all. Then, in the compression stage, we can
choose a move that would better help with the compression.

Algorithm 3 Repair all CPD entries relevant to node x ∈ X
1: procedure SINGLESOURCEREPAIR(x)
2: for each node v ∈ V do
3: update CPD[x, v]
4: update CPD[v, x]

Algorithm 3 repairs the entries relevant to a single node
in the CPD. Let CPD[a, b] represent the first optimal move
from node a towards node b. In line 3, the old first move

CPDold

· s · t ·
· · · · · ·
s · · · north ·
· · · · · ·
t · east · · ·

CPDnew

· s · t ·
· · · · · ·
s · · · west ·
· · · · · ·
t · east · · ·

Figure 4: CPD repair example for the (s, t) pair in Figure 3.

from node x towards v is replaced with the new optimal first
move. In line 4, the old first move from node v towards x is
overwritten with the new optimal first move.

In the example in Figure 3, the CPD entries relevant to
source node s have to be repaired. Figure 4 shows an ex-
cerpt of CPDold and CPDnew. To easily follow the exam-
ple, the figure illustrates uncompressed first-move matrices.
Furthermore, we show the moves only for the two nodes at
hand, s and t. Adding an obstacle cell has been depicted as
the transition from the map in Figure 3a to the one in Figure
3b. Removing an obstacle is the dual change, which can be
depicted as the transition from Figure 3b to Figure 3a. It is
quite intuitive to accept the following property.

Property 3. If a traversable cell in a map becomes an obsta-
cle, then the distance between any two cells cannot decrease.

Property 3 dually means that, if an obstacle cell becomes
traversable, then the distance between any two cells cannot
increase. We present a method to find the set of nodes X :
the P list is a concrete instantiation of X , being a superset
of the nodes that need a repair. In other words, P is a subset
of nodes of the old graph that is sufficient to guarantee the
correctness and the optimality of a repaired CPD, when P is
used instead of X in Algorithm 2.

Dynamically Adding Obstacles

Before defining list P , we introduce a notion that will be
exploited in the definition of the list P .

Definition 2. (Border) The border B of a connected sub-
graph M of a graph G = (V,E) is

B = {m ∈ M | ∃v ∈ V \M s.t. (m, v) ∈ E}.
Notice that, if graph G corresponds to a grid map, then

a connected sub-graph M represents a region of the map,
where each cell in the region is reachable starting from any
other cell belonging to the same region. The border B of the
sub-graph corresponds to the cells in the region that have a
neighbor cell that does not fall in the region.

Now we can switch back to the introduction of a P list.

Definition 3. (P list) Let Gold = (V,E) be the graph corre-
sponding to a grid map, and Gnew be the graph correspond-
ing to the same grid map once it has been changed. We call a
P list a set of nodes in Gnew, whose border is denoted as B,
such that, for every pair of nodes including a node b ∈ B in
the border and a node v ∈ V \P that does not belong to P ,
the distance between them in Gnew is equal to the distance
in Gold, namely dnew(b, v) = dold(b, v).
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Algorithm 4 shows a method to build a P list, after one
cell has become an obstacle. Let O be the node in Gold cor-
responding to that cell. First, the region is initialized with
the neighbors of O.3 For each node p ∈ P , the distance in
Gnew between p and any node in V \P is computed: if the
distance is the same as in Gold, DISTUNCHANGED(p) (line
6) returns true, hence node p is added to border set B (line
7). Otherwise, each neighbor of node p is added to list P ,
unless already there (line 10).

Algorithm 4 Computing a P list

1: procedure BUILDPLIST(NO)
2: P ← No � Initialize P to all neighbors of the

obstacle, and mark the neighbors as unprocessed
3: while P has unprocessed elements do
4: p ← getUnprocElem(P) � Return an

unprocessed elem. from P , without removing it from P
5: mark p as processed
6: if DISTUNCHANGED(p) then
7: add(B, p) � add node p in B
8: else
9: for each neighbor n of p do

10: add(P, n) � Add node n to P , unless
already there. Every newly added node to P is marked
as unprocessed.

11: return P

Algorithm 5 Find out whether distances from a node p to all
nodes in V \P have changed

1: procedure DISTUNCHANGED(p)
2: Dijkstraold(p) � Dijkstra run in the old graph
3: Dijkstranew(p) � Dijkstra run in the new graph
4: for each node v ∈ V \P do
5: if dnew(p, v) �= dold(p, v) then
6: return false

7: return true

With reference to the example in Figure 3, the nodes
marked with + in Figure 5 represent region P , which is
small compared to the entire map.

We prove that it is sufficient to repair (by exploiting Algo-
rithms 2 and 3) all nodes that belong to P in order to guar-
antee that CPDnew gives an optimal path between any pair
of nodes in the new graph.

Theorem 1. For every source node s and target t, CPDnew

gives an optimal path from s to t in the new graph after an
obstacle cell has been added.

Proof. Proving that CPDnew gives an optimal path for all
pairs of nodes (s, t) amounts to proving that CPDnew[s, t]
is optimal in the new graph Gnew = (V,E). The following
two cases cover all situations.
Case A: t ∈ P .

3O implicitly falls in the region; however, as it is now an obsta-
cle, it is not appended to list P since it does not have to be repaired.

+ + +

+ O +

+ +

Figure 5: Region P for added obstacle O.

List P is the input parameter of Algorithm 2. Hence, Di-
jkstra’s algorithm is run for the new graph, assuming t
as the source. Dijkstra’s algorithm computes all the min-
imal paths from t to whichever node in V , then also
the minimal paths from t to s. This guarantees that both
CPDnew[t, s] and CPDnew[s, t], as repaired by the call of
Algorithm 3, are optimal.

Case B: t �∈ P .

B1: For all nodes h on the path from s to t given by CPDold,
condition h �∈ P holds. It follows that CPDnew gives ex-
actly the same moves as CPDold for this path, and that
the length of the path in the new graph is the same as in
the old graph. From Property 3 it follows that the path
is optimal in the new graph, hence move CPDnew[s, t] is
optimal too.

B2: There exists a node h ∈ P on the path from s to t given by
CPDold. Let h be the first node that belongs to P along the
path. Let π = 〈s, ..., h, ..., t〉 be such a path. This means
that h ∈ B, where B is the border of P . Based on Defini-
tion 3, the distance between s and h in the new graph is
the same as the distance in the old graph. Also the distance
between h and t in the new graph is the same as the dis-
tance in the old graph, because h ∈ B and t �∈ P . Namely
dold(s, h) = dnew(s, h) and dold(h, t) = dnew(h, t).
The following conclusions can be drawn:

1. From node s towards h, CPDnew gives the same first
moves for every node as CPDold along this path. Since
no repair has been done for this path, it follows that
CPDnew gives an optimal path from s to h too.

2. From node h towards t, the proof follows directly from
Case A above since h ∈ P .

The P list is related to the concept of a swamp (Pochter
et al. 2010). A swamp is a region on a map (or, more gener-
ally, a subgraph of a graph) with the property that any two
nodes that do not belong to the swamp can be connected
with an optimal path that does not intersect the swamp. The
definition suggests that swamps could possibly be used to
speedup our repair process. For example, we could identify
swamps on a map in a preprocessing step. Then, if an obsta-
cle is dynamically added inside a swamp, we could exploit
the fact that distances between nodes that do not belong to
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the swamp remain unchanged. We leave the exploration of
this idea as future work.

Dynamically Removing Obstacles

The same definition given for list P , when an obstacle cell
is added in the map, can be used when a non-traversable
cell becomes traversable. Also, P is built as in the case of
an added obstacle, the only difference being that, when re-
moving obstacles, the cells that have become traversable are
added to the P set. The first optimal moves from the new
traversable cell F to any other traversable cell and, vice
versa, from any other traversable cell to F have to be com-
puted and saved in CPDnew. Hence the new node F has to
be added in list P , and the CPD has to be repaired for all the
nodes in P .

Theorem 2. For every source node s and target t, CPDnew

gives an optimal path from s to t in the new graph once an
obstacle cell has been removed.

Proof. The following two cases cover all situations.
Case A: t ∈ P .

The proof is the same as for Case A of Theorem 1.

Case B: t �∈ P .

B1: For all nodes x on an optimal path from s to t in the new
graph, condition x �∈ P holds. Let π be an optimal path
in the new graph from s to t. It follows that path π does
not pass through the new node F . Let π1 be an optimal
path in the old graph from s to t. According to Property
3, π1 cannot be shorter than π because the old graph has
one more obstacle than the new graph. Hence an optimal
path in the old graph has the same length as an optimal
path in the new graph. It follows that the path given by
CPDold has the same length as the path given by CPDnew.
No node in the path belongs to P , so no repair is needed
for the nodes in this path. It follows that CPDnew gives
exactly the same moves as CPDold, and the path is optimal
in the new graph.

B2: There exists a node h ∈ P on the path from s to t
given by CPDnew. Let h be the first node that belongs
to P along the path. Let π = 〈s, ..., h, ..., t〉 be such a
path. This means that h ∈ B, where B is the border of
P . Based on Definition 3, the distance between s and
h in the new graph is the same as the distance in the
old graph. Also the distance between h and t in the new
graph is the same as the distance in the old graph, because
h ∈ B and t �∈ P . Namely dold(s, h) = dnew(s, h) and
dold(h, t) = dnew(h, t).
The following conclusions can be drawn:

1. Along the path from node s towards h, CPDnew gives
the same first moves for every node as CPDold. Since
no repair has been done for this path, it follows that
CPDnew gives an optimal path from s to h too.

2. For the nodes from h towards t along the path, the proof
follows directly from Case A above since h ∈ P .

X

Figure 6: An example where P can cover the entire map, if
the cell marked with X changes its status from traversable to
blocked, or from blocked to traversable.

Worst Case Behavior

In the worst case, the P list, as defined and computed in
this paper, grows linearly with the map size, and can even
cover the entire map. Think, for instance, of a two-room
map, where the rooms communicates through a door, as il-
lustrated in Figure 6. An added obstacle closes such a door
(location X on the map). Or, dually, removing an obstacle
from X opens a door between the two rooms. In such cases,
P includes all the traversable cells in the grid (and the border
B is empty).

This example also suggests that, in certain particular
cases, one could bypass the computation of the P list. For
example, when cell X becomes blocked in Figure 6, it cre-
ates two disjoint connected components. Basically, there is
no need to repair the CPD, as all moves inside one connected
component remain correct and optimal.4 This topic, how-
ever, is beyond the focus of this work. We chose this exam-
ple to illustrate a case where P grows large, and we preferred
it to other examples for its simplicity.

Experimental Results

In this section we outline the experimental setup, followed
by an analysis of the results when obstacles are dynamically
added, and the results when obstacles are dynamically re-
moved from the map.

Experimental Setup

Three different types of maps, including real commercial
game maps and artificial benchmarks, have been used to
evaluate the performances of the proposed CPD repairing
technique. The maps, all downloaded from http://movingai.
com/benchmarks/ (Sturtevant 2012), were selected from
Games (Dragon Age: Origins, Warcraft III), Mazes and
Rooms. Specifically, four game maps were used, ranging in
size from 40,392 to 115,010 nodes (traversable cells). Two
room maps were considered, with room sizes of 8 × 8 and
32 × 32 cells. They have 51,553 and 60,645 nodes, respec-
tively. The test maps further include two mazes: one with
corridors of width 1, and 32,707 traversable cells, and one
with corridors of width 8, with 58,264 traversable cells.

4It’s easy to ensure that the CPD is never queried for a discon-
nected pair of nodes, by checking first if they belong to the same
connected component.
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Figure 7: Size of list P for an added obstacle in game maps.
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Figure 8: Size of list P for an added obstacle in room maps.

Every obstacle was added to or removed from each map
50 times in a random position, to evaluate the performance.

Experimental results are displayed as box-plots. A box-
plot depicts groups of numerical data through their quartiles.
In each box, the central mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the extreme
data points that are not considered as outliers, while the out-
liers are plotted individually using symbol +.

Adding an Obstacle

Figures 7 and 8 show the size of list P when an obstacle has
been added to the game maps and room maps, respectively.
We consider obstacles of 4 distinct sizes: 1, 5, 10, and 20
cells respectively. The x axis shows the obstacle size. The
y axis shows the size of the list P , as a percentage of the
total number of nodes. Notice the logarithmic scale on the
y axis. The median number never exceeds 1%, regardless of
the obstacle size, and often is significantly lower than 1%.
As expected, the size of list P increases with the size of the
obstacle. Figures 7 and 8 show results for 4-connected grids.

Table 1: Summary statistics for the size of the list P , in the
case of added obstacles.

4-connected 8-connected
Maps Min Mean Min Mean
Games 1 node 1.20 % 1 node 2.60 %
Rooms 1 node 2.68 % 1 node 5.46%
Mazes 1 node 2.11 % 1 node 2.52%
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Figure 9: Size of list P for a removed obstacle in game maps.

Results on 8-connected grids lead to a similar conclusion.
Table 1 summarizes the results of the tests with added ob-

stacles. For each combination of a type of maps (Games,
Rooms, Mazes) and a connectivity style (4-connected, 8-
connected), we show the minimum and the average size of
P , across all maps in that category, and all obstacle place-
ments on each map. The best case is when P contains only
one node, which occurs when the added obstacle has only
one neighbor. Mean values are low single-digit percentages,
with values slightly larger in the case of 8-connected maps.

In summary, as displayed in Figures 7 and 8, and in Table
1, P often is much smaller than the set of nodes V . This
shows that the proposed repairing process can conveniently
replace the recomputation of the CPD.

Removing an Obstacle

Figures 9 and 10 plot the size of the list P when an obstacle
has been removed from games maps and room maps, respec-
tively. As in the case of adding obstacles, the median values
do not exceed 1% and often are much smaller, especially for
smaller obstacle sizes. Figure 11 plots mean values nodes
in list P for games maps and room maps. The figures show
that the P list is a small percentage of the entire graph. The
percentage increases with the size of the obstacle removed.
It grows up to 10% in the figure (Rooms, 20-cell obstacles),
and it is significantly smaller in games maps (all obstacles
sizes) and in Rooms for smaller obstacles. (Note the loga-
rithmic scale in the figure.)

Table 2 displays summary statistics in a similar fashion
to Table 1, but this time for removed obstacles instead of
added obstacles. In the best case, which occurs when the re-
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Figure 10: Size of list P for a removed obstacle in room
maps.
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Figure 11: Mean size of list P for a removed obstacle in
game maps and room maps.

moved obstacle has only one neighbour, the list P contains 2
nodes: the new added node and its neighbour. The table too
shows that the average case is a small percentage of the total
number of nodes. It varies from 1.33% (4-connected games
maps) to 7.40% (8-connected mazes). Interestingly, the re-
sults are somewhat stronger for games maps as compared to
synthetic maps such as rooms and mazes. This is a tendency
observed, for example, in Tables 1 and 2 and in Figure 11.

A straightforward implementation of our repair technique
requires running Dijkstra’s algorithm twice per repaired
node, once in the old graph and once in the new graph (see
Algorithm 5). The Dijkstra run on the new graph is also
reused for the repair of the node at hand. Thus, CPU time
ratios are doubled compared to the P percentages reported
in this section. In future work, part of the Dijkstra search ef-
fort could be avoided (e.g., return from Algorithm 5 as soon
as a difference is encountered).

Table 2: Summary statistics with the average size of list P ,
in the case of removed obstacles.

4-connected 8-connected
Maps Min Mean Min Mean
Games 2 nodes 1.33 % 2 nodes 2.54 %
Rooms 2 nodes 2.70 % 2 nodes 4.10%
Mazes 2 nodes 3.36 % 2 nodes 7.40%

Conclusions

CPDs are a state-of-the-art approach to pathfinding, a core
AI problem. A software system based on CPDs requires a
preprocessing phase to compute and compress APSPs: the
preprocessing time can be heavy, especially on large maps.
While very successful in many applications, doing most of
the work in the offline knowledge compilation phase re-
stricts the environment to be static.

In this work we have focused on repairing an existing
CPD once a change has occurred in the original map. The
changes on which our attention has focused are the addition
and the removal of one obstacle. A technique for repairing
the first moves in the CPD is proposed, which relies on the
creation of a list of nodes (called list P) whose first moves,
stored in the CPD, might not be optimal after the occurred
change. Experimental evidence demonstrates that the pro-
posed repairing technique can be significantly faster than a
recomputation of the CPD from scratch, above all in large
maps and when small changes have occurred.

Future work includes algorithmic improvements (e.g.,
the integration of swamps, mentioned earlier), and an ex-
tended evaluation. One experiment would focus on dynamic
changes at cells with a high (vertex) reach (Gutman 2004),
to evaluate if turning their status from traversable to blocked
and vice versa involves a larger number of cells whose rele-
vant entries in the CPD need to be repaired.

So far, approaches to pathfinding that adopt a CPD to
build an optimal path have been regarded as antithetic with
respect to approaches that search for an optimal path online
only, without any support from compiled knowledge pro-
duced offline. See (Baier et al. 2015) for a notable excep-
tion. A challenge for future research is making online search
cooperate with (online) CPD building and/or repairing. A
whole spectrum of combined approaches can be envisaged:
for instance, the information produced by online searches
for optimal paths could be exploited to incrementally update
the CPD content, and, as soon as a change has dynamically
occurred in a map, the CPD could be (partially) repaired.
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