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Abstract

Recent research on bidirectional search describes anomalies,
or cases in which improved heuristics lead to more node ex-
pansions. Aiming to avoid such anomalies, this paper char-
acterizes desirable properties for bidirectional search algo-
rithms, and studies conditions for obtaining these proper-
ties. The characterization is based on a recently developed
theory for bidirectional search, which has formulated condi-
tions on pairs of nodes such that at least one node from ev-
ery pair meeting these conditions must be expanded. More-
over, based on this must-expand-pairs theory, we introduce a
method for enhancing heuristics by propagating lower bounds
(lb-propagation) between frontiers. This lb-propagation can
bestow the desirable properties on some existing algorithms
(e.g., the MM family) while avoiding the above anomaly al-
together. Empirical results show that lb-propagation reduces
the number of node expansions in many cases.

1 Introduction

Bidirectional heuristic search (Bi-HS) algorithms interleave
two separate searches: a search forward from start, and
a search backward from goal. Recently, a new line of re-
search into Bi-HS was spawned. Eckerle et al. (2017) de-
fined three conditions on the node expansions required by
Bi-HS algorithms to guarantee solution optimality. Follow-
ing work reformulated these conditions as a must-expand
graph (GMX). It was shown that the Minimum Vertex Cover
(MVC) of GMX corresponds to the minimal number of ex-
pansions required to prove optimality (Chen et al. 2017). Fi-
nally, a number of algorithms were introduced. NBS (Chen
et al. 2017) and DVCBS (Shperberg et al. 2019) are non-
parametric GMX-based Bi-HS algorithms that aim to find a
vertex cover of GMX quickly, but in different ways. Frac-
tional MM (fMM(p)) (Shaham et al. 2017) is a parametric al-
gorithm that generalizes the MM algorithm (Holte et al. 2017)
by controlling the fraction p of the optimal path at which the
forward and backward frontiers meet. Another parametric
algorithm, GBFHS (Barley et al. 2018), iteratively increases
the depth of the search by using a split function to determine
how deep to search on each side at each iteration.

Holte et al. (2017) observed an anomaly where improving
a heuristic caused the MM algorithm to expand more nodes.
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Aiming to generalize this anomaly beyond MM, Barley et al.
(2018) defined that an algorithm is well-behaved if using a
better heuristic will never hurt its performance; otherwise, it
is ill-behaved. In this paper we expand this line of work on
Bi-HS in several ways.

First, we study and develop desirable properties for Bi-HS
algorithms by re-formalizing the well-behaved property and
providing a definition which hs even more general than
that of Barley et al. (2018). We also introduce the reason-
able property which guarantees that an algorithm will never
expand nodes if the lower-bound associated with them is
greater than the current global lower bound (LB) on the op-
timal solution. We then introduce and prove sufficient con-
ditions required to fulfill each property.

Second, building on the conditions of Eckerle et al.
(2017), we introduce lb-propagation, a method for propagat-
ing the best lower-bound between the two search frontiers,
thereby improving heuristics and the f -values in each fron-
tier. lb-propagation can be used on top of any Bi-HS algo-
rithm; it is already used implicitly in GMX-based algorithms
such as NBS and DVCBS. We show that lb-propagation
causes the MM family to become well-behaved and reason-
able, thereby avoiding the anomaly, although some algo-
rithms, such as BS∗, cannot be fixed in this way.

Third, we perform a study on a number of algorithms,
characterizing those that are inherently well-behaved and
reasonable, as well as whether or not lb-propagation bestows
these properties on the algorithms. Finally, we show exper-
imentally that lb-propagation reduces the number of node
expansions for non-GMX-based algorithms.

1.1 Definitions and Background

A shortest-path problem, P , is defined as a tuple
(G = {V,E}, start, goal) in which G is a graph and
start, goal ∈ V . The aim of such problems is to find
the least-cost path between start and goal. Let d(x, y) de-
note the shortest distance between x and y and let C∗ =
d(start, goal). In some cases, the minimal edge-cost is
known beforehand; this minimal cost is denoted by ε.

Most Bi-HS algorithms maintain two open lists: OpenF

for the forward search and OpenB for the backward search.
There are two types of heuristics in bidirectional search.
Front-to-front heuristics (de Champeaux 1983; de Cham-
peaux and Sint 1977) estimate the distance between any
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two nodes in the search space, while front-to-end heuris-
tics (Kaindl and Kainz 1997) estimate the distance from any
node and the start or goal. Front-to-front heuristics may
be more computationally expensive, and efficient data struc-
tures for front-to-frond algorithms do not exist. This paper
only considers front-to-end heuristics.

Given a direction D (either forward or backward) We use
fD, gD and hD to indicate f -, g-, and h-values in direction
D. In addition, fminD and gminD represent the minimal
f - and g-values in that direction.

The forward heuristic hF is admissible iff hF (u) ≤
d(u, g) for every state u ∈ G and is consistent iff hF (u) ≤
d(u, u′) + hF (u

′) for all u, u′ ∈ G. The backward heuris-
tic hB is defined analogously. A pair of forward and back-
ward heuristic functions is bi-admissible if both heuristics
are admissible. Likewise, such a pair is bi-consistent if both
heuristics are consistent. A search algorithm is admissible
if it is guaranteed to find an optimal solution whenever its
heuristic is admissible. Finally, a heuristic h1 is said to domi-
nate another heuristic h2 if and only if for every node n ∈ G,
h1(n) ≥ h2(n) (Russell and Norvig 2016). We limit the dis-
cussion in this paper to admissible deterministic black-box
expansion-based algorithms (called DXBB by Eckerle et al.
(2017)) used with bi-admissible and bi-consistent heuristics.

1.2 Fractional MM

We use the MM family of algorithms as a case study, there-
fore briefly describe them next. MM is a Bi-HS algorithm that
meets in the middle (Holte et al. 2017), i.e. it is guaranteed
to never expand a node whose g-value exceeds C∗/2. Frac-
tional MM (fMM(p)) is a generalization of MM that never ex-
pands a node in the forward direction whose g-value exceeds
C∗/p, and never expands a node in the backward direction
whose g-value exceeds C∗/(1 − p). For a given fraction
0 < p < 1, fMM(p) chooses a node for expansion according
to the following priority functions:

prF (u) = max{gF (u) + hF (u),
gF (u)

p + ε}
prB(v) = max{gB(v) + hB(v),

gB(v)
1−p + ε}

A node with minimal priority in either direction is chosen
for expansion.1 fMM terminates when one of the following
conditions is met:

• One of OpenF or OpenB is empty.

• There exists a node v in both open lists with C = gF (v)+
gB(v) s.t. either:

– fminF ≥ C;
– fminB ≥ C;
– gminF + gminB + ε ≥ C; or
– min{ min

u∈OpenF

prF (u), min
v∈OpenB

prB(v)} ≥ C.

Note that MM is a special case of fMM(p) with p = 1/2.

1For p = 1 or p = 0 fMM runs forward- or backward A*.
Additionally, the original definition of fMM and MM did not in-
clude ε, which was introduced in later versions of the algorithms:
MMε (Sharon et al. 2016) and fMMε (Shaham et al. 2018).

Shaham et al. (2017) showed that for every problem in-
stance, there exists a fraction p∗ such that fMM(p∗) is opti-
mally efficient and will expand the minimal number of nodes
required to guarantee the optimality of its solution. However,
p∗ is not known a priori since it depends on the search-tree
structure and the value of C∗.

2 The Well-Behavedness Property

If h1 and h2 are consistent heuristics and h1(s) ≥ h2(s) for
all non-goal nodes (i.e., h1 dominates h2), then every node
expanded by A∗ using h1 will also be expanded by A∗ using
h2 up to tie-breaking in the last f -layer (Holte 2010). Holte
et al. (2017) describe an anomaly that may occur in Bi-HS
algorithms such that a similar property does not hold. An ex-
ample is provided in which MM using a global zero-heuristic
(denoted henceforth by h0 and the MM variant using it by
MM0) expands a subset of nodes that are expanded by MM
that uses a stronger heuristic. Barley et al. (2018) also re-
fer to the above anomaly, calling algorithms well-behaved
if switching to a stronger heuristic does not lead to the ex-
pansion of any additional nodes, and ill-behaved otherwise.
Well-behavedness has not been formally defined in a gen-
eral manner; Holte et al. (2017) did not formally define the
anomaly and Barley et al. (2018) defined it using terms that
are specific to the GBFHS algorithm. We introduce a general
definition of the well-behavedness property below and show
that the anomaly results from a combination of (1) different
tie-breaking, and (2) not using the theoretical lower-bound
conditions for guiding the expansion process.

Many heuristic search algorithms do not fully specify
which single node to expand at any given point in the search.
For example, A∗ may choose any node in OPEN with a min-
imal f -value, and fMM can choose any node in either open
list with minimal priority. Instead, these algorithms specify
a set of nodes from the open lists (denoted henceforth by
allowable-set) from which the next node must be expanded.
An additional tie-breaking scheme is used to select a single
node from the allowable-set. Tie-breaking is often specific
to a given implementation, and in most cases is not part of
the published algorithm definition. For example, A∗ must ex-
pand nodes with the smallest f -value. There are many pos-
sible tie-breaking rules to decide how to break ties among
nodes with the same f -value (e.g., smallest h or smallest
g, generation order etc.). However, all of these tie-breaking
functions are low-level details of A∗ implementations.

We use Ah(I, t) to denote the sequence of nodes ex-
panded by running algorithm A using heuristic h on problem
instance I with a tie-breaking function t, and by S(Ah(I, t))
the (unordered) set of nodes induced by the expansion per-
formed by Ah(I, t).

Definition 1. Let h1, h2 be bi-admissible bi-consistent
heuristics, such that h1 dominates h2. Algorithm A is said to
be well-behaved if for every tie-breaking policy t and prob-
lem instance I , there exists a tie-breaking policy t′ such that
S(Ah1(I, t

′)) ⊆ S(Ah2(I, t)).

This is a general definition that can be used with any
Bi-HS algorithm. To date, only A∗ and GBFHS have been
proven to be well-behaved, while MM has been shown to be
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Figure 1: An example in which the anomaly manifests

ill-behaved (see below). This property has not been stud-
ied in other algorithms. We define conditions that enable the
classification of algorithm as either well- or ill-behaved, cov-
ering a wider family of algorithms.

2.1 Example of the Anomaly for fMM

In order to explore algorithms that are ill-behaved, we bor-
row an example from Holte et al. (2017), depicted in Fig-
ure 1. In this example ε = 1 and the values inside nodes are
h-values in the direction indicated by the arrow. We hence-
forth denote this bi-consistent heuristic by hfig . MM0 ex-
pands nodes by their g-value. Thus, MM0 starts by expanding
start and goal (priority of 0), after which nodes S1, G1, A,
and C have a priority of 1. There exists a tie-breaking policy
t in which MM0 expands A,C, and S1 and then terminates,
since it finds a solution of cost 4 and gminF +gminB+ε =
4. In contrast, MM must expand both S1 and G1 after expand-
ing start and goal before expanding A and C, since S1 and
G1 have a priority of g+h = 2g+ε = 3, while A and C have
a priority of 4 (g + h = 4). Consequently, there exists a tie-
breaking policy t for MM0 such that for every a tie-breaking
policy t′ the set of nodes expanded by running MM on this
instance using t′ is not a subset of the set of nodes expanded
by MM0 using t. Thus, MM is ill-behaved.

To understand why MM is ill-behaved, consider the situa-
tion after MM expanded start, goal, and S1. At this point,
OpenF contains S2 (gF = 2, hF = 1, prF = 5), and A
(gF = 1, hF = 3, prF = 4); OpenB contains G1 (gB =
1, hB = 2, prB = 3), and C (gB = 1, hB = 3, prB = 4).
Thus, if the optimal solution goes through G1, it must go
through either S2 or A. If the optimal path goes through G1

and S2, its cost would be at least gF (S2)+ gB(G1)+ ε = 4.
Similarly, if the optimal path goes through G1 and A then
its cost would be at least fF (A) = 4. Hence, every path that
goes through G1 must have a cost of at least 4. The priority
of G1 (prF (G1) = 3) doesn’t reflect knowledge available in
the search, which causes MM to be ill-behaved. This observa-
tion suggests that the sufficient conditions for node expan-
sions (Eckerle et al. 2017) may be connected to whether an
algorithm is well-behaved.

2.2 Guaranteeing Solution Optimality

Unidirectional search algorithms must expand all nodes n
with f(n) < C∗ in order to guarantee the optimality of so-
lutions (Dechter and Pearl 1985).

Eckerle et al. (2017) generalized this to Bi-HS by ex-
amining pairs of nodes 〈u, v〉 such that u ∈ OpenF and
v ∈ OpenB . Let ε be the minimal edge cost in G2. If u and
v meet the following conditions, then every algorithm must
expand at least one of u or v in order to ensure that there is
no path from s to g passing through u and v of cost < C∗.

1. fF (u) < C∗
2. fB(v) < C∗
3. gF (u) + gB(v) + ε < C∗

Definition 2. For each pair of nodes (u, v) let
lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v) + ε}

In Bi-HS, a pair of nodes 〈u, v〉 is called a must-expand
pair (MEP) if lb(u, v) < C∗. The MEP definition is equiva-
lent to Eckerle’s conditions; for each MEP only one of u or
v must be expanded. In the special case of unidirectional
search, algorithms expand all the nodes with fF < C∗,
which is equivalent to expanding the forward node of every
MEP. Bi-HS algorithms may expand nodes from either side,
potentially covering all the MEPs with fewer expansions.

However, to address the ill-behavedness property we wish
to bound the minimal solution cost that can pass through
each node u in our open lists. To do so, we use the bound
lb(u, v) and apply it to every node v on the opposite frontier
and take the minimum among these values. Formally, for
every node u in OpenD let

lb(u) = min
v∈openD

{lb(u, v)}

where D denotes the opposite direction from D. Then, lb(u)
is a lower bound on the cost of any solution that passes
through u. Finally, we define the global lower bound LB
to be the minimal lb(u) among all nodes. This is identi-
cal to the minimal lb(u, v) among all pairs. LB was used
in the high-level pseudocode (described below) of the NBS
and DVCBS algorithms. Note that the search begins with
LB = lb(start, goal), after which LB increases iteratively
until LB = C∗. We can now use these definitions to show
whether a family of algorithms is well-behaved.

2.3 Conditions for Being Well-Behaved

We first introduce three sufficient conditions for an admissi-
ble Bi-HS algorithm A to be well-behaved:

Condition C1: Algorithm A chooses a node u for expan-
sion only if lb(u) = LB.

Condition C2: Algorithm A terminates as soon as a solu-
tion with cost C ≤ LB is found.

Condition C3: The allowable-set of algorithm A contains
every node u with lb(u) = LB.

Theorem 1. An admissible Bi-HS algorithm A that satisfies
conditions C1, C2, and C3 is well-behaved.

Proof. Let h1, h2 be bi-admissible bi-consistent heuristics,
s.t. h1 dominates h2, and let t2 be an arbitrary tie-breaking

2Strictly speaking the ε term was added by Shaham et al. (2018)
as a generalization of the inequalities, since ε = 0 is always a
lower-bound to edge cost.
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policy. We will show that there exists a tie-breaking policy
t1 s.t. S1 = S(Ah1(I, t1)) ⊆ S(Ah2(I, t2)) = S2.

To do this, we examine the execution of Ah1(I, t1 = t2)
and show how to modify t1 to make S1 ⊆ S2. Let n be the
first node expanded in the trace of the execution s.t. n /∈ S2

(if no such node exists then S1 ⊆ S2 and we are done). In
addition, let D be the direction in which n was expanded.
We now have two cases:
Case 1: There exists a node n′ in one of the frontiers s.t.
lb(n′) = lb(n) = LB and n′ ∈ S2. given C3, we can mod-
ify t1 to choose n′ instead of n.
Case 2: All of the nodes n′ in the frontiers with lb(n′) =
lb(n) = LB are not in S2. We will show that this case is
not possible. Note that since n was chosen for expansion, all
other nodes m in the frontiers have lb(m) ≥ lb(n) = LB.
Let v be a node in OpenD s.t. lb(n) = lb(n, v). Since
lb(v) ≤ lb(n, v) and lb(v) ≥ lb(n) then lb(n) = lb(v),
and therefore v /∈ S2. Since both n and v are in OPEN using
h1 when n is chosen for expansion, and because n is the first
to not be in S2, then all other nodes that were expanded by
h1 were expanded by h2. Thus, at some point in Ah2(I, t2),
both n and v are in OPEN with a g-value less than or equal to
that found in Ah1(I, t1). We can therefore refer to lb(n, v) in
Ah2(I, t2). Henceforth, lbi(n, v) refers to the value lb(n, v)
in Ahi(I, ti). Since h1 dominates h2, and since the g-values
cannot be larger when using h2, lb2(n, v) ≤ lb1(n, v). We
proceed by examining the possible values of lb1(n, v), and
show that any value leads to a contradiction. There are three
possible values of lb1(n, v) to consider:
(i) If lb1(n, v) < C∗, then lb2(n, v) < C∗ as well. There-
fore, 〈n, v〉 is an MEP and any admissible algorithm must
expand one of them. The fact that n, v /∈ S2 contradicts the
admissibility of A.
(ii) If lb1(n, v) = C∗, then since Ah1(I, t1) expanded n, it
did not yet find any solution of cost C∗. Since LB is a lower-
bound on the optimal solution, a solution with cost C∗ must
pass through some node m with lb(m) = lb(n) = C∗ that
was not yet expanded. Under the assumption of case 2, there
are no nodes m with lb(m) = lb(n) = LB in one of the
frontiers that is also in S2. Therefore, Ah2

(I, t2) will never
find a solution of cost C∗. This is a contradiction to the as-
sumption that A is admissible.
(iii) If lb1(n, v) > C∗, then since Ah1(I, t1) expanded n
and A satisfies C2, it did not find any solution of cost C∗.
Additionally, when n was chosen for expansion, the lb be-
tween every pair of nodes in the open lists is greater than C∗.
Thus, a solution of cost C∗ does not exist by contradiction
to the definition of C∗.

These conditions are sufficient, but not necessary. In the
next section we explore another desirable property.

3 The Reasonableness Property

While being well-behaved is an interesting property, some
well-behaved algorithms do not behave sensibly. For exam-
ple, an algorithm that completely ignores heuristic values
and expands nodes according to their g-value is clearly well-
behaved because a stronger heuristic will not change the be-
havior of the algorithm. However, such an algorithm might

expand nodes n with f(n) > C∗ whose g(n) ≤ C∗. Gilon,
Felner, and Stern (2016) denoted algorithms as reasonable
if they have a best-first structure (i.e. an open list and an ex-
pansion rule), and they prune any node n with f(n) > C,
where C an upper bound on the cost. We generalize this no-
tion as follows:
Definition 3. A Bi-HS algorithm is reasonable if for every
tie-breaking policy it does not expand a node v if either
lb(v) > C∗, or if lb(v) = C∗ and a solution of cost C∗
has already been found.

Note that since f(n) ≤ lb(n) and C∗ ≤ C, the redefi-
nition of the reasonable property is tighter than the original
definition of Gilon, Felner, and Stern (2016).
Theorem 2. Any admissible Algorithm A that satisfies C1
and C2 is reasonable.

Proof. Let A be an algorithm that always expands a node
u with lb(u) = LB and terminates as soon as a solution
with a cost c ≤ LB is found. Assume by contradiction that
lb(u) > C∗. Since lb(u) is minimal (lb(u) = LB) then
every solution that passes through every node in the open
lists has a cost > C∗. Since C2 dictates that A terminates
when a solution with a cost c = LB is found, no solution
with cost C∗ could have been found. Therefore, there is no
possible solution with a cost of C∗, by contradiction to the
definition of C∗.

To summarize both theorems, an algorithm that satisfies
conditions C1 and C2 is reasonable, and one that also sat-
isfies C3 is well-behaved. In both cases, the conditions are
sufficient but not necessary.

4 Improving Heuristics by lb-propagation

We next introduce several methods that improve the heuris-
tic value of a node by utilizing information gathered dur-
ing the search in both frontiers. The strongest method which
propagates lb-values causes some ill-behaved algorithms to
become well-behaved (e.g., the MM family). In addition, al-
gorithms that satisfy conditions C1 and C2 with respect to
f instead of lb which use this method become reasonable.
Note that this improvement is achieved by modifying only
the heuristic, without any other changes to the algorithms.

4.1 Propagating g- and f -values

A simple observation on the nature of bidirectional search
yields that the minimum gD-value with the addition of ε
is an admissible heuristic for any node in OpenD. Further-
more, we can propagate the minimal f -value from the op-
posite frontier because it is a lower bound on any possible
solution. Formally, let gminD = min

v∈openD

{g(v)} and let

fminD = min
v∈openD

{fD(v)}. We can improve the heuristic

of node n in direction D to be:

h′
D(n) = max{hD(n), gminD + ε, fminD − gD(n)}

h′ clearly dominates h and is easy to implement. One only
needs to keep track of gminD and fminD for both direc-
tions. Nevertheless, h′ does not solve the anomaly; MM using
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Algorithm Without lb-p With lb-p
R WB R WB

BHPA × � � �
BS∗ × × � ×
fMM × × � �

GBFSH � � � �
NBS, DVCBS � × � ×

Table 1: Algorithm properties summary. R columns denote
reasonableness, WB columns denote well-behavedness.

h′ on Figure 1 behaves identically to MM using the original
heuristic, as described in Section 2.1

4.2 lb-propagation heuristic

The next heuristic exploits knowledge from lb-values. Let
hlb(n) = lb(n) − gD(n) denote the new heuristic function
for nodes in direction D. Consider the following key ob-
servations: (1) hlb is a dynamic heuristic that takes into ac-
count information generated by the search in the opposite
direction. Therefore, its value for a node may change as the
search proceeds. (2) Since lb(n) ≥ fD(n), hlb(n) ≥ hD(n)
for every node in both directions. (3) hlb maintains the bi-
consistency and bi-admissibility properties of h.

The heuristic hlb dominates h′ because h′ looks at the
global values of gminD and fminD, while hlb considers
each pair of nodes in isolation. Despite the fact that hlb

dominates h′, using lb-propagation depends on the ability
to efficiently compute the lb of nodes in OPEN. This task
is certainly more difficult than applying the other propa-
gation, which simply requires maintaining the minimal f -
and g-values in each direction. In some algorithms the lb-
propagation can be applied to a limited subset of OPEN, pos-
sibly enabling an efficient implementation (similar to NBS).
In other cases, the lb of every node is required. This leads
to a potentially less a efficient implementation, using g-h
buckets (Burns et al. 2012); this solution would work if the
number of possible g-values (and therefore h-values) is rel-
atively small, which is the case in many common domains.

An important property of hlb is that it changes the f -
values of nodes to be their lb-value, and therefore makes
some existing algorithms well-behaved and reasonable as
we show in the next section.

5 Classification of Existing Algorithms

As mentioned, lb-propagation makes the f -values of nodes
identical to their lb-values. Therefore, any algorithm which
chooses to expand nodes based on f -values and applies lb-
propagation will now satisfy condition C1. However, in or-
der to be provably reasonable it should also satisfy condition
C2, and to be well-behaved, condition C3 is also needed. In
this section, we review several Bi-HS algorithms and ana-
lyze how lb-propagation affects them. For any algorithm A
we henceforth denote by Alb a version of A that applies lb-
propagation. Table 1 summarizes the results of this section,
for algorithms with and without lb-propagation (lb-p).

5.1 BHPA

We begin with BHPA (Pohl 1971), a simple algorithm that
first selects a direction and chooses to expand a node with
minimal f -value in that direction. BHPA terminates when
the minimal f -value is greater than or equal to C∗.
Lemma 3. BHPA is well-behaved.

Proof. Let I be a problem instance, h1 and h2 be heuristics
that are bi-admissible and bi-consistent on I s.t. h1 domi-
nates h2, and let t2 be a tie-breaking policy. Let S2 denote
S(BHPAh2

(I, t2)) and let S1 denote S(BHPAh1
(I, t1 =

t2)). Let u be the first node expanded in the trace of
BHPAh1(I, t1) s.t. u /∈ S2. If u does not exist, we are
done. Otherwise, we want to fix t1. If there exists a node
n ∈ S2 that has a minimal f -value in either direction of
BHPAh1(I, t1) when u was selected for expansion, we can
alter t1 to select n instead of u. Otherwise, there exists a
node u′ in the opposite direction of u with minimal f -value,
and we could modify t1 to select u′ instead of u for expan-
sion. We know that for every node v, fDh1(v) ≥ fD

h2(v),
thus fDh1(u) ≥ fD

h2(u) and fD
h1(u′) ≥ fD

h2(u′). There-
fore, if fD

h1(u) < C∗ and fD
h1(u′) < C∗, we know

that fDh2(u) < C∗ and fD
h2(u′) < C∗, hence S2 must

contain either u or u′, so that BHPAh2
(I, t2) could ter-

minate by contradiction to the fact that u, u′ /∈ S2. Other-
wise, fDh1(u) = C∗ or fDh1(u′) = C∗. In this case, since
BHPAh1

(I, t1) is admissible and must find an optimal so-
lution, there must be some other node v ∈ S2 in the open
lists when u was chosen for expansion s.t. fDh1(v) = C∗
by contradiction to the case assumption.

Lemma 4. BHPA is unreasonable.

Proof. Consider the problem instance I in Figure 1 assum-
ing that hF (S3) = hB(G3) = 0. Since for all i ∈ {1, 2, 3},
fF (Si) = fB(Gi) = 3, while fF (A) = fB(C) = 4, run-
ning BHPAhfig

on I with any tie-breaking policy must
expand either {S1, S2, S3}, {G1, G2, G3}, or both, before
being able to expand A or C. Furthermore, there exists a tie-
breaking in which BHPAhfig

expands start and goal fol-
lowed by {S1, S2, S3}. Since lb(S3) = gF (S3) + gB(C) +
ε = 5 > C∗ = 4, BHPA is unreasonable.

Lemma 5. BHPAlb is reasonable and well-behaved.

Proof. Since after the propagation the f -value of a node
equals its lb, BHPAlb always expands nodes with minimal
lb (C1). In addition, BHPAlb terminate as soon as a solution
with a cost C ≤ fminD = LB is found (C2). Finally, the
allowable-set of BHPAlb contains all nodes with minimal lb
since they all have the same f -value (C3).

5.2 BS∗

BS∗ (Kwa 1989) expands a node with a minimal f -value
from the smallest open-list (Pohl’s cardinality criterion
(Pohl 1971)) and terminates when the minimal f -value is
greater than or equal to C∗. In addition, BS∗ trims nodes
from the open lists if their f -value is greater than or equal
to costs of potential solutions that were already found.
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Lemma 6. BS∗ and BS∗
lb are ill-behaved.

Proof. Consider problem instance I in Figure 2. Using the
heuristic values written inside the nodes, BS∗ starts by ex-
panding start and goal in an unspecified order. Nodes G1

and S2 get f -values of 2, and nodes S1 an f -value of 5. Since
BS∗ has already found a solution of cost 4, nodes S1 are
trimmed from OpenF . At this point OpenF contains only
S2, while OpenB contains two nodes (G1). Thus, BS∗ is
forced to choose S2 for expansion before terminating.

Next, consider BS∗ using h0. The beginning of the search
is similar: start and goal in an unspecified order. Then
all nodes of OpenF get an f -value of 1. Since no node is
trimmed, OpenF contains 3 nodes, while the OpenB con-
tains 2 nodes. Thus, BS∗ expands the G1 nodes before ter-
minating, without expanding S2.

While applying the propagation changes the f -value of
nodes, the behaviour of BS∗

lb is identical to BS∗ on this ex-
ample. Thus, both BS∗ and BS∗

lb are ill-behaved. We note
that C3 is violated here because the allowable-set of BS∗

lb

is forced to contain only one open list.

Lemma 7. BS∗ is unreasonable.

Proof. The proof is similar to that of Lemma 4. Consider
the problem instance I in Figure 1 assuming that hF (S3) =
hB(G3) = 0. Similar to the proof of Lemma 4, BS∗ will
have to expand start,goal, {S1, S2, S3} and {G1, G2, G3}
before expanding A or C. Since lb(S3) = gF (S3)+gB(C)+
ε = 5 > C∗ = 4, BS∗ is unreasonable.

Lemma 8. BS∗
lb is reasonable.

Proof. Since after the propagation the f -value of a node
equals its lb, BS∗

lb always expands nodes with minimal lb
(C1). Finally, BS∗

lb terminates as soon as a solution with
a cost c ≤ fminD = LB is found (C2). Therefore, both
conditions are satisfied and BS∗

lb is reasonable.

5.3 fMM

We have already shown that fMM is ill-behaved in Section
2.1. We now show that fMM is also unreasonable.

Lemma 9. fMM is unreasonable.

Proof. Consider fMM(1/4) applied to the problem instance
in Figure 3. After expanding start and goal, a solu-
tion of cost 11 is discovered, and LB = lb(S2, G2) =
gF (S2) + gB(G2) + ε = 12. Since pr(G2) =
max{fB(G2),

4
3gB(G2)} = 10, G2 will be expanded be-

fore termination, even though 12 = LB > C∗ = 11.
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Figure 3: fMM is not reasonable

Lemma 10. fMMlb always expands a node u with lb(u) =
LB, hence it is reasonable.

Proof. Assume by contradiction that fMMlb chose a node u
in direction D for expansion s.t. lb(u′) 
= LB. Therefore,
there exists a pair of nodes (u′, v′) s.t. u′ is in the OpenD,
v′ is in OpenD and lb(u′) = lb(v′) = lb(u′, v′) = LB <
lb(u). Using the lb-propagation, we know that fD(u′) =
lb(u′) = lb(u′, v′), and fD(v′) = lb(v′) = lb(u′, v′). There-
fore, fD(u) = lb(u) > fD(u′). Likewise, fD(u) = lb(u) >
fD(v′).

fD(u) > fD(v′) = fD(u′) = lb(u′) = lb(u′, v′)

≥ gD(u′) + gD(v′) + ε

Since u was chosen for expansion, we know that
prD(u) ≤ prD(u′) and prD(u) ≤ prD(v′). Thus,

max(fD(u),
gD(u)

p
+ ε) ≤ max(fD(u′),

gD(u′)
p

+ ε)

and

max(fD(u),
gD(u)

p
+ ε) ≤ max(fD(v′),

gD(v′)
1− p

+ ε)

Since fD(u) = lb(u) > lb(u′) = fD(u′) = lb(v′) =
fD(v′),

fD(u) ≤ gD(u′)
p

+ ε (1)

fD(u) ≤ gD(v′)
1− p

+ ε (2)

By summing inequality (1) multiplied by p with inequality
(2) multiplied by 1− p, we get:

fD(u) = pfD(u) + (1− p)fD(u) ≤ gD(u′) + gD(v′) + ε

In contradiction to: fD(u) > gD(u′)+gD(v′)+ε above.

Lemma 11. fMMlb (with lb-propagation) is well-behaved.

Proof. Here we cannot use Theorem 1 directly since the
allowable-set of fMMlb does not include every node u with
lb(u) = LB, as some of these nodes might have g-values
that raise their priority. Nonetheless, we show that fMMlb

using lb-propagation is in fact well-behaved, using a slight
modification to Theorem 1. In Lemma 10 we showed that
fMMlb only expands nodes with minimal lb. In addition,
fMMlb terminates when the lowest f -value is ≥ C∗. Since
the f -value of nodes after applying lb-propagation is equal
their lb-value, fMMlb stops when LB ≥ C∗. Thus, C1
and C3 are satisfied. However, C2 is violated by the prior-
ity mechanism of fMM, since nodes with the same lb-value
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might have different priorities due to their g-values and di-
rection. For example, if there is only one node in OpenF

with fF = 3,gF = 1, and only one node in OpenB with
fB = 3,gB = 2, fMM will give lower priority to the node
in OpenF , based on his g-value (priority of 3 versus a pri-
ority of 5). Nonetheless, we will show that fMMlb is still
well-behaved. The problem arises since the first case of
of the proof of Theorem 1 reduces to nodes n′ with the
lb(n′) = lb(n) and pr(n′) = pr(n). Therefore, nodes n′
with lb(n′) = lb(n) and pr(n′) 
= pr(n) are part of the sec-
ond case of the proof, which does not cover them. In that
case, we considered some v s.t. lb(n) = lb(v) = lb(n, v).
Following that, it was clear that v /∈ S2. Nonetheless, in
our case, v could have been in S2 if it had a different prior-
ity than n when fMMlb was running using h1. Since fMMlb

expands nodes with minimal priority, pr(v) > pr(n). The
priority of v could have been determined by one of the fol-
lowing options:
Case 1: fD(v) = lb(v) = pr(v). However, lb(u) ≤ pr(u)
and lb(v) = lb(u). Therefore, pr(v) ≤ pr(u), by contradic-
tion to the assumption that pr(v) > pr(u).
Case 2:

gD(v)

1−p = pr(v). Since fD2
(v) ≤ fD1

(v) and

fD(v) ≤ gD(v)

1−p = pr(v), we know that the pr(v) using h2

is less or equal than pr(v) using h1. In addition, the priority
of node n (and any of its ancestors) when running using h1

must be strictly less than pr(v), by contradiction to the fact
that v was already chosen for expansion.

Therefore, we can conclude that v is still not in S2 and the
proof of Theorem 1 is generalized to fMM as well.

5.4 NBS and DVCBS

NBS (Chen et al. 2017) and DVCBS (Shperberg et al. 2019)
are two prominent Bi-HS algorithms that choose nodes for
expansion with minimal lb. At any point in the search, NBS
chooses a pair of nodes with minimal lb and expands them
both. DVCBS expands nodes from a subset of those with
minimal lb, determined by maintaining a dynamic version of
the GMX (denoted by DGMX) and finding its MVC. Both al-
gorithms terminate as soon as a solution with a cost c ≤ LB
is found. Since the expansion policy and termination condi-
tion of both algorithm already consider LB, their properties
remain unaffected by lb-propagation.

Clearly, NBS and DVCBS satisfy conditions C1, and C2
and are therefore reasonable (up to a single additional ex-
pansion). However as previously mentioned, the allowable-
set of DVCBS includes only nodes that make up the MVC of
DGMX, violating C3. In addition, once NBS has chosen a
pair (u, v) for expansion, it is committed to expanding both
nodes. Therefore, after expanding u, any node u′ in the same
direction of u s.t. lb(u′) = lb(u) = lb(v) = LB is not in the
allowable set of NBS until after expanding v, in violation of
condition C3.

Lemma 12. NBS is ill-behaved.

Proof. Consider the problem instance of Figure 4.3 NBS
using h0 will start by expanding start and goal. After-

3This example is due to Robert Holte and Sandra Zilles
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Figure 4: NBS is not well-behaved

wards, X and A are added to OpenF , and C is added to
OpenB . Since gF (x) = fF (x) = 12, lb(X,C) = 12, while
lb(A,C) = 9. Therefore, the pair (A,C) is chosen for ex-
pansion, after which a path of length 20 has been discovered.
Since lb(X,B) ≥ 20 and lb(B,B) ≥ 20, NBS terminates
after expanding start, A,C, and goal.
NBS using the heuristic in the nodes starts by expanding

start and goal. Next, X and A are added to OpenF , and C
is added to OpenB . Since lb(A,C) = 20 (due to fF (A)) and
lb(X,C) = 19 (due to fB(C)). Therefore, NBS will expand
the pair (X,C), despite the fact that X was not expanded
using a weaker heuristic.

Lemma 13. DVCBS is ill-behaved.

Proof. Consider the problem instance of Figure 2. DVCBS
using the heuristic in the nodes starts by expanding either
start or goal since both of them are MVCs of DGMX. If
goal was chosen, start must be expanded, since it becomes
the only MVC, followed by S2 for a similar reason, after
which DVCBS terminates since LB = 5 > 4 (the path that
was discovered from start to goal). Likewise, if start was
chosen for expansion, DVCBS will expand either S1 and ter-
minate, or goal followed by S1. In both cases the G1 nodes
are never expanded. However, DVCBS using h0 must expand
start and goal in an unspecified order, followed by G1.

5.5 GBFSH

GBFHS is an algorithm that iteratively increases the depth
of the search (fLim). At each depth, a pre-defined split
function (parameter of the algorithm) is used that deter-
mines how deep to search on each side at each iteration
by splitting fLim to gLimF and gLimB s.t. fLim =
gLimF +gLimB+ε−1 . At every iteration, GBFHS consid-
ers nodes for expansion in direction D with f ≤ fLim and
g < gLimD. GBFHS terminates when as soon as a solution
with a cost equals to fLim is found.
GBFHS was proved to be well-behaved.4 We show that

GBFHS is reasonable by showing that it expands only nodes
with minimal lb, even without applying lb-propagation.
Lemma 14. GBFHS is reasonable.

Proof. Since GBFHS considers nodes for expansion in di-
rection D with f ≤ fLim and g < gLimD, a node u that
is chosen for expansion will have lb(u) ≤ max{gLimF +
gLimB + ε − 1, fLim} = flim 5, and since the flim is
increased only after there are no nodes left for expansion,

4Even though well-behavedness was not defined in a general
manner when GBFHS was created, the proof of Barley et al. (2018)
is still applicable to the new definition with slight modifications.

5Barley et al. (2018) implicitly assume that ε is an integer ≥ 1.
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lb(u) = flim = LB. Ergo, GBFHS expands nodes with
minimal lb. In addition, GBFHS terminates as soon as a so-
lution of cost flim = LB is found. Thus, C1 and C2 are
satisfied and GBFHS is reasonable.

6 Experimental results

We ran experiments on three domains: (1) 50 10-Pancake
Puzzle instances with the GAP heuristic (Helmert 2010). To
get a range of heuristic strengths, we also used the GAP-n
heuristics (for n = 1 . . . 9) where the n smallest pancakes
are deleted from the heuristic computation; (2) 50 instances
of the 10-disk 4-peg Towers of Hanoi (TOH4) problem with
(8+2) and (6+4) additive PDBs (Felner, Korf, and Hanan
2004). (3) Grid-based pathfinding: 65 maps from Dragon
Age Origins (DAO) (Sturtevant 2012), each with different
start and goal points (a total of 1,680 instances).

Figure 5 shows the average number of nodes expanded by
MM and by MMlb in the 10-pancake domain across all GAP
heuristics. Clearly, adding the lb-propagation significantly
reduces the number of nodes expanded. Using hlb seems to
reduce the number of node expansions for each of the GAP
heuristics up until GAP-7, in which the heuristic effectively
becomes h0. In addition, this figure clearly demonstrates the
anomaly of MM; the average number of nodes expanded by
MM using heuristics GAP-2 through GAP-6 is greater than
the number of nodes expanded by using heuristics GAP-7
through GAP-9 (notice the “hump-in-the-middle” (Barley
et al. 2018)). By contrast, the hump-in-the-middle of MMlb

is much smaller, and in fact not visible when considering
the average number of expansions. However, there were still
some individual problem instances in which MMlb expanded
fewer nodes using a weaker heuristic. This is consistent with
Theorem 1, since we are using a predetermined tie-breaking
policy and not the best possible tie-breaking policy for ev-
ery instance. Interestingly, MMlb using ε = 0 demonstrates
no hump-in-the-middle, even when considering individual
problem instances.

Similarly, Figure 6 shows the average number of nodes
expanded in the 10-pancake domain across all GAP heuris-
tics, with ε = 1 by a variant of BHPA denoted by BHPA-
Min. BHPA-Min selects the frontier that includes the node
with the minimal f -value. Here too, the lb-propagation

Figure 5: MM vs. MMlb on 10-pancake

Figure 6: BHPA-Min vs. BHPA-Minlb on 10-pancake

improves the search by reducing the number of nodes
expanded. Even though BHPA-Min is well-behaved, and
demonstrates no hump-in-the-middle in the average case,
the lb-propagation still improves the algorithm by making
it reasonable. This improvement is more evident with GAP-
8 and GAP-9; Despite these GAP heuristics behaving like
h0 in the 10-pancake domain, lb-propagation incorporates
gminF + gminB + ε into the f -values of nodes in BHPA-
Min, exposing an additional termination condition, and al-
lowing the search process to halt sooner.

The average number of node expanded across domains,
using ε = 1, appear in Table 2. There is one row for each al-
gorithm, and one column for each of the domains and their
heuristics; h denotes the original heuristic, while hlb denotes
the heuristic enhanced by lb-propagation. The algorithms
we have tested are BS∗, fMM(p) using p ∈ {1/4, 1/2, 3/4},
BHPA-Min and BHPA-Alt, another variant of BHPA that al-
ternates between the frontiers between expansions. The re-
sults show that using the lb-propagation reduces the number
of node expansions in most cases by up to a factor of 4.
The lb-propagation particularly excels when the heuristics
are weak. In these cases using hlb always results in fewer
node expansions; this is also the case for GAP-4 through
GAP-9, which do not appear in the table. Another interest-
ing observation is that the hump-in-the-middle is less pro-
nounced in all tested algorithms. BS∗ seems to be the least
affected by the propagation among all algorithms. We posit
that the reason for this is that BS∗ is highly dependent on the
search process; since BS∗ selects a node for expansion from
the direction with the smallest open list, minor increments
in heuristic values might cause nodes to be trimmed away,
possibly changing the size balance of the two frontiers. BS∗
also assumes that the heuristic is consistent, which other al-
gorithms do not. We have also experimented using ε = 0;
the results are similar to the reported ε = 1 results.

Naturally, maintaining and using lb for each node incurs
overheads. In the domains we used, g-h-bucketing requires
negligible time and space. However, we did not focus on
code optimization, and used naive data-structures. Thus, run
times are not reported here. Improving efficiency with a
bucketing scheme or adapting the data structures used for
efficient lb computations by NBS is reserved for future work.
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Algorithm
10-Pancake TOH-10 Grid

GAP-0 GAP-1 GAP-2 GAP-3 8+2 6+4 DAO
h hlb h hlb h hlb h hlb h hlb h hlb h hlb

BPHA-Alt 26 26 674 665 9,484 6,916 50,804 14,564 26,435 23,666 96,102 69,130 368 319
BPHA-Min 25 21 465 427 6,375 5,615 34,497 28,127 33,770 13,270 159,079 49,128 413 309

BS∗ 25 25 374 682 5,528 5,585 30,687 11,957 18,268 18,351 73,434 63,918 311 496
fMM(1/4) 103 115 5,348 1,985 30,858 11,030 82,396 27,097 22,660 19,899 65,364 57,453 414 407

MM 264 76 2,519 682 5,944 1,684 5,034 2,040 41,407 34,307 89,883 76,852 511 501
fMM(3/4) 64 81 2,098 1,111 15,424 6,002 48,227 13,263 42,452 36,933 173,968 158,290 442 434

Table 2: Experimental results of average node expansions across domains

7 Discussion

We have examined the source of the anomaly exhibited
by some Bi-HS algorithms, where using a better heuris-
tic causes the algorithm to expand more nodes. Aiming to
improve some algorithms in which the anomaly manifests,
the properties of “well-behavedness” and “reasonableness”
were defined, and sufficient conditions (C1, C2, C3) for
these properties were established. These properties provide
insights that lead to the lower-bound propagation scheme
(lb-propogation) that can be added to many existing Bi-HS
algorithms, in some cases bestowing upon them these desir-
able properties. Empirical results show that modified algo-
rithms exhibit better behavior, alleviating or even eliminat-
ing the undesirable “hump-in-the-middle” effect seen when
an algorithm is run with heuristics of varying quality.

The well-behavedness property as defined in this paper
ensures that there exists a tie-breaking policy for which the
anomaly would not occur. However, the desired tie-breaking
policy is not specified. It is a non-trivial issue, left for future
research, to define conditions that guarantee a stronger well-
behavedness property of an algorithm, such that a dominat-
ing heuristic would never cause more nodes to be expanded
than the weaker heuristic using the same tie-breaking policy.
Another interesting research direction is to re-examine the
three well-behavedness conditions with respect to heuristics
that are strictly dominating, i.e., h1 > h2.
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