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Abstract

Multi-Agent Motion Planning (MAMP) is the task of find-
ing conflict-free kinodynamically feasible plans for agents
from start to goal states. While MAMP is of significant prac-
tical importance, existing solvers are either incomplete, in-
efficient or rely on simplifying assumptions. For example,
Multi-Agent Path Finding (MAPF) solvers conventionally as-
sume discrete timesteps and rectilinear movement of agents
between neighboring vertices of a graph. In this paper, we
develop MAMP solvers that obviate these simplifying as-
sumptions and yet generalize the core ideas of state-of-the-
art MAPF solvers. Specifically, since different motions may
take arbitrarily different durations, MAMP solvers need to ef-
ficiently reason with continuous time and arbitrary wait dura-
tions. To do so, we adapt (Enhanced) Conflict-Based Search
to continuous time and develop a novel bounded-suboptimal
extension of Safe Interval Path Planning, called Soft Con-
flict Interval Path Planning. On the theoretical side, we justify
the completeness, optimality and bounded-suboptimality of
our MAMP solvers. On the experimental side, we show that
our MAMP solvers scale well with increasing suboptimality
bounds.

Introduction

Multi-Agent Motion Planning (MAMP) is the task of find-
ing conflict-free kinodynamically feasible plans for agents
in a shared environment. Each agent has a unique start and
a unique goal state. Real-world applications of MAMP in-
clude autonomous aircraft towing vehicles (Morris et al.
2016), autonomous non-holonomic vehicles such as forklifts
in industrial applications (Cirillo, Uras, and Koenig 2014)
and unmanned aerial traffic management systems (Prevot et
al. 2016).

While MAMP is of significant practical importance, ex-
isting formulations rely on simplifying assumptions. For ex-
ample, the Multi-Agent Path Finding (MAPF) problem uses
a formulation in which: (1) the environment is captured by a
graph with vertices representing locations and edges repre-
senting straight-line movements between vertices; and (2)
time is discretized into synchronized timesteps. Although
MAPF problems are motivated by real-world applications,
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their solutions may not be kinodynamically feasible for real
agents such as cars or drones for two major reasons. First,
rectilinear movement cannot be executed on agents with
non-holonomic constraints. Second, different agents may
have different motions with arbitrarily different durations
and thus cannot be easily synchronized. To partially alleviate
this problem, it is possible to post-process a MAPF solution
using simple temporal networks and continuous refinement
of trajectories (Hoenig et al. 2016; 2018). However, these
methods may produce arbitrarily suboptimal plans even if
they post-process optimal MAPF solutions.

One way to address the limitations of the post-processing
strategy is to work with an enriched formulation of the
MAMP problem. A first step in this direction is the formula-
tion of the MAPFR problem (Walker, Sturtevant, and Felner
2018) which is identical to the MAPF problem but allows
positive non-uniform edge weights to represent different ac-
tion durations. Still, in MAPFR, vertices represent locations
in metric space and movements are rectilinear with uniform
velocities.

In this paper, we formulate a richer MAMP problem in
which vertices represent states and directed edges represent
kinodynamically feasible motions. A state corresponds to a
point in the configuration space of an agent. For example, it
may include the (x, y, z)-coordinates, orientation, steering
angle, velocity or other features that characterize it. An edge
from one state to another corresponds to a feasible motion
between them. The weight of the edge represents the dura-
tion of the motion. The environment is discretized into cells.
Each edge specifies a list of swept cells, each cell with an as-
sociated time interval during which the agent executing the
motion occupies it. As a consequence, in our formulation,
an agent is allowed to take any geometric shape. This for-
mulation also naturally lends itself to reasoning over state
lattices (Pivtoraiko, Knepper, and Kelly 2009), probabilistic
roadmaps (PRMs) (Kavraki et al. 1996) and rapidly explor-
ing random trees (RRTs) (Kuffner and LaValle 2000).

Computationally, the richer formulation of the MAMP
problem is more challenging, and solvers that attempt to
solve it are either incomplete or inefficient (Cirillo, Uras,
and Koenig 2014; Salvado et al. 2018; Saha et al. 2016).
In this paper, we develop a significantly more efficient and
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provably effective MAMP solver by drawing inspiration
from the success of a state-of-the-art MAPF solver, called
Conflict-Based Search (CBS) (Sharon et al. 2015). While
CBS is not directly applicable to the MAMP problem, we
successfully extend its core ideas to the richer MAMP do-
main. To do so, (1) we adapt (Enhanced) CBS (Barer et al.
2014) to efficiently reason with continuous time and arbi-
trary wait durations; (2) we introduce an efficient implemen-
tation of reservation tables using interval maps (Cormen et
al. 2009); and (3) we develop a novel bounded-suboptimal
extension of Safe Interval Path Planning (SIPP) (Phillips and
Likhachev 2011), called Soft Conflict Interval Path Planning
(SCIPP). On the theoretical side, we justify the complete-
ness, optimality and bounded-suboptimality of our MAMP
solvers on state lattices. On the experimental side, we show
that our MAMP solvers scale well with increasing subopti-
mality bounds.

Background and Related Work

The MAPF Problem

The MAPF problem is defined on a graph G = (V,E) with
agents 1, . . . ,K. Each agent j has unique start and goal ver-
tices sj , gj ∈ V . At each discrete timestep, each agent can
either move to a neighboring vertex or wait at its current ver-
tex, both with unit cost. A solution is a set of feasible paths,
one path {sj0, . . . , sjTj

, sjTj+1, . . .} for each agent j, such that

no two paths collide. A path for agent j is feasible if sj0 = sj ,
there exists a smallest Tj such that sjt = gj for t ≥ Tj , and
for all t ∈ {0, 1, . . . , Tj − 1}, 〈sjt , sjt+1〉 ∈ E or sjt = sjt+1.
A collision between agents j and k is either a vertex col-
lision (j, k, s, t) with s = sjt = skt , or an edge collision
(j, k, s1, s2, t) with s1 = sjt = skt+1 and s2 = sjt+1 = skt .
The travel time of agent j is Tj . For the commonly used ob-
jective of minimizing

∑K
j=1 Tj , the MAPF problem is NP-

hard (Yu and LaValle 2013b).

MAPF and Related Solvers

Numerous optimal MAPF solvers have been developed in
recent years, including reduction-based solvers (Yu and
LaValle 2013a; Surynek et al. 2016), A*-based solvers
(Standley 2010) and dynamically coupled search-based
solvers like M* (Wagner and Choset 2015) and CBS (Sharon
et al. 2015). See (Felner et al. 2017) for complete surveys.

Various generalizations of the MAPF problem have also
been studied. In Any-Angle MAPF (Yakovlev and An-
dreychuk 2017), agents can move in arbitrary directions
but along straight lines. In (Walker, Sturtevant, and Fel-
ner 2018), a solver based on ICTS (Sharon et al. 2013) is
presented for the MAPFR problem. While it can success-
fully handle arbitrary action durations, it produces rectilin-
ear motions of agents and relies on geometry-based colli-
sion checking that is often computationally expensive. In
CBS with Constraint Layering (CBS+CL) (Walker, Chan,
and Sturtevant 2017), a hierarchy of edge subgraphs is used
with CBS to plan curvilinear paths for agents. However,
CBS+CL sacrifices optimality and does not efficiently rea-
son about arbitrary wait durations.

CBS and ECBS

We now describe CBS and ECBS in more detail since our
MAMP solvers generalize them.

CBS is an optimal MAPF solver. It performs high-level
and low-level searches. Each high-level node contains a set
of constraints and, for each agent, a feasible path that re-
spects the constraints. The high-level root node has no con-
straints. The high-level search of CBS is a best-first search
that uses the costs of the high-level nodes as their f -values.
The cost of a high-level node is the sum of the travel times
along the agents’ paths it contains. When CBS expands a
high-level node N , it checks whether the node is a goal
node. A high-level node is a goal node if and only if none of
its paths collide. If N is a goal node, then CBS terminates
successfully and outputs the paths in N as solution. Other-
wise, at least two paths collide. CBS chooses a collision to
resolve and generates two high-level children of N , called
N1 and N2. Both N1 and N2 inherit the constraints of N .
If the chosen collision is a vertex collision (j, k, s, t), then
CBS adds the vertex constraint (j, s, t) to N1 (that prohibits
agent j from occupying vertex s at timestep t) and the vertex
constraint (k, s, t) to N2. If the chosen collision is an edge
collision (j, k, s1, s2, t), then CBS adds the edge constraint
(j, s1, s2, t) to N1 (that prohibits agent j from moving from
vertex s1 to vertex s2 between timesteps t and t+1) and the
edge constraint (k, s2, s1, t) to N2. During the generation of
the high-level node N , CBS performs a low-level search for
the agent i affected by the newly added constraint. The low-
level search for agent i is a (best-first) A* search that ignores
all other agents and finds a minimum-cost path from the start
vertex of agent i to its goal vertex that is both feasible and
respects the constraints of N that involve agent i.

ECBS(w) (Barer et al. 2014) is a w-suboptimal variant
of CBS whose high-level and low-level searches are fo-
cal searches rather than best-first searches. A focal search
(Pearl and Kim 1982), like A*, uses an OPEN list whose
nodes n are sorted in increasing order of their f -values
f(n) = g(n) + h(n). Unlike A*, a focal search with sub-
optimality factor w also uses a FOCAL list of all nodes cur-
rently in OPEN whose f -values are no larger than w times
fmin, the currently smallest f -value in OPEN. The nodes
in FOCAL are sorted in increasing order according to sec-
ondary heuristic values. A* expands a node in OPEN with
the smallest f -value, but a focal search instead expands a
node in FOCAL with the smallest secondary heuristic value.
If h(n) is admissible, then focal search is guaranteed to be
w-suboptimal. Secondary heuristic values do not have to
be consistent (or admissible). The high-level and low-level
searches of ECBS(w) are focal searches. During the gen-
eration of a high-level node N , ECBS(w) performs a low-
level focal search with OPEN list, OPENi(N), and FOCAL
list, FOCALi(N), for the agent i affected by the added
constraint. The high-level and low-level focal searches of
ECBS(w) use measures related to the number of collisions
as secondary heuristic values.

45



State Lattices

State lattices (Pivtoraiko, Knepper, and Kelly 2009) are ex-
tensions of grids that are able to model motion constraints
and are therefore well suited to planning for non-holonomic
and highly constrained agents with limited maneuverability.
A state lattice is constructed by discretizing the configura-
tion space into a high-dimensional grid and connecting the
cells of the grid with motion primitives. A motion primi-
tive models kinodynamically feasible actions of the agent. A
state in a state lattice is a tuple of the form (x, y, z, θ, v, . . .),
where x, y, z are the coordinates of the agent’s center, θ is
the agent’s orientation, v is the agent’s velocity, etc. An edge
in a state lattice represents a motion primitive and is associ-
ated with a duration and a list of cells that are swept by the
agent when the motion is executed. Motion primitives were
successfully used for autonomous navigation in DARPA’s
urban challenge (Ferguson, Howard, and Likhachev 2008)
and for quadrotors (Liu et al. 2018). A state lattice facilitates
heuristic search algorithms that find optimal or bounded sub-
optimal paths1.

SIPP

SIPP (Phillips and Likhachev 2011) is a search-based single-
agent path planner designed to handle dynamic obstacles ef-
ficiently. In SIPP, each state is associated with a fixed list
of safe time intervals during which it does not collide with
any dynamic obstacles. Using time intervals in the state-
space representation allows SIPP to reason about wait du-
rations “in bulk”, making it more efficient than A* in the
presence of arbitrary wait durations. SIPP has already been
successfully used for Multi-Agent Any-Angle Path Finding
(Yakovlev and Andreychuk 2017) and Multi-Agent Pickup
and Delivery problems (Ma et al. 2019).

Problem Formulation

We define the MAMP problem to be a generalization of
the MAPF problem. Thus, the objective of minimizing the
sum of travel times in the MAMP problem, as defined be-
low, is also NP-hard. Unlike MAPF, the MAMP problem is
posed on states instead of locations. A state specifies dis-
cretized values of an agent’s location, orientation, velocity,
etc. An edge represents a kinodynamically feasible motion
with an arbitrary duration. The sequence of motions in a fea-
sible plan leads an agent from its start state to its goal state.
An agent is allowed to take any geometric shape, implicitly
specified by a set of occupied cells.

We formally define the MAMP problem as follows. We
are given an environment represented by a list of cells C. We
are given agents 1, . . . ,K, each with an associated graph
Gj = (V j , Ej) and start and goal vertices, sj , gj ∈ V j .
Each vertex s ∈ V j represents a state and is associated
with a list of cells {cs1, . . . , csm(s)} ⊆ C occupied by the
agent while at s. Each edge e ∈ Ej represents a motion
and has an associated weight, w(e) > 0, that represents
its duration. e is also associated with a multiset of cells
{ce1, . . . , cem(e)} ⊆ C. Each cell cei is associated with a time

1optimality with respect to the state lattice discretization

interval [lbei , ub
e
i ] during which it is swept by e after the be-

ginning of its execution. Thus min1≤i≤m(e) lb
e
i = 0 and

max1≤i≤m(e) ub
e
i = w(e).

A sequence πj = {〈ej1, tj1〉, . . . , 〈ejTj
, tjTj

〉} is a plan for

agent j, where eji = (sji−1, s
j
i ) ∈ Ej and tji ≥ 0 is

the beginning time of the execution of eji . πj is feasible
if and only if ej1 . . . , e

j
Tj

is an sj-gj path in Gj and, for

all i ∈ {2, . . . , Tj}, tji ≥ tji−1 + w(eji−1). This means
that agent j waits at state sji−1 and therefore occupies
cells {cs1, . . . , csm(s)} for s = sji−1 during the time inter-

val [tji−1 + w(eji−1), t
j
i ].

2 We assume that agent j occu-
pies {cs1, . . . , csm(s)} for s = gj during the time interval

[tjTj
+ w(ejTj

),∞]. The travel time of agent j in πj is given

by tjTj
+ w(ejTj

). A collision between two agents occurs if
the time intervals in which they sweep or occupy the same
cell overlap. A solution to the MAMP problem is a set of
feasible plans such that no two agents collide. We focus on
minimizing the sum of travel times of all agents.

In this paper, we consider a state lattice representation of
the MAMP problem. We note that the MAMP problem can
also be equivalently considered on PRMs and RRTs.

ECBS for MAMP

In this section, we present ECBS-CT,3 a generalization of
ECBS for the MAMP problem. Algorithm 1 shows the pseu-
docode for the high-level search of ECBS-CT. It takes as in-
put an MAMP instance and a suboptimality bound w ≥ 1.
ECBS-CT generates a solution that has a cost no more than
w times the optimal cost. Thus, for w = 1, ECBS-CT is op-
timal and essentially generalizes CBS for the MAMP prob-
lem.

In lines 1-2, the high-level root node is initialized using
a low-level search for each agent. In ECBS-CT, the low-
level search uses SCIPP. The main loop in lines 3-12 per-
forms a focal search. In lines 11-12, FOCAL is appropriately
maintained to include all relevant nodes from OPEN if fmin

changes. The secondary heuristic value of a generated high-
level node is defined to be the total duration of time intervals
in which two or more agents collide. This can be efficiently
computed while the reservation table is updated in line 10.

In line 6, a conflict (c, [lb, ub]) between two agents j and
k is identified. We focus on resolving the earliest conflict
among all agents in high-level node N ; and this earliest con-
flict can be efficiently identified using the reservation table.
Resolving the earliest conflict is known to be beneficial in
the CBS framework (Sharon et al. 2015). The conflict is re-
solved in line 8 by posting a constraint on the cell c at a
timepoint τ ∈ [lb, ub]. This constraint (c, τ) prohibits the
corresponding agent from being at cell c at timepoint τ . Two
natural questions that arise in this context are: (1) “Why is
a timepoint used instead of a time interval?” and (2) “What
should be the value of τ?”

2Waiting can be conditioned on the velocity being zero.
3CT stands for continuous time.

46



Algorithm 1: ECBS-CT (High-Level Search)
Input: MAMP instance, w ≥ 1.
Output: A w-suboptimal solution.

1 Initialize root node with a plan for each agent using SCIPP.
2 Push the root node to OPEN and FOCAL.
3 while FOCAL �= ∅ do
4 N ← Pop(FOCAL).
5 if N is a solution then return N .
6 Identify a conflict (c, [lb, ub]) between agents j and k

at cell c ∈ C during the time interval [lb, ub].
7 Identify a time point τ ∈ [lb, ub].
8 Generate two successor nodes, N j and Nk for agents j

and k, each imposing the additional constraint (c, τ).
9 Replan using SCIPP for agents j and k in N j and Nk.

10 Update reservation tables in N j and Nk.
11 Push N j and Nk to OPEN and conditionally to

FOCAL.
12 Update FOCAL if necessary.

13 return no solution.

The answer to the first question relates to the requirements
of CBS (ECBS) to guarantee optimality (w-suboptimality).
The proof of optimality (w-suboptimality) relies on the
property that any solution which obeys the constraints of a
high-level node N also obeys the constraints of at least one
of its high-level successor nodes N j or Nk. This is directly
analogous to the proofs of Lemma 2 in (Sharon et al. 2015)
and Theorem 1 in (Barer et al. 2014). However, if the con-
straint specifies a time interval [lb′, ub′] ⊆ [lb, ub] instead
of a timepoint, this property no longer holds. In particular,
if an optimal solution includes agent j sweeping c during
the time interval [lb′, (lb′ + ub′)/2) and agent k sweeping c
during the time interval ((lb′ + ub′)/2, ub′], it is spuriously
eliminated.

The answer to the second question relates to Zeno behav-
iors (Zhang et al. 2001). If τ < ub, agents j and k can satisfy
their respective constraints by waiting for τ − lb time units
before conflicting again at c during the non-singleton time
interval (τ, ub]. Similarly, in a future iteration, they may con-
flict yet again during the non-singleton time interval (τ ′, ub]
for some ub > τ ′ > τ . Therefore, any strategy for choosing
the value of τ other than setting it to the upper bound of the
time interval (ub) results in a Zeno behavior.

Reservation Table

In ECBS, a reservation table is simply a set of discrete
timesteps specified for each cell in the environment during
which this cell is occupied by some agent. In ECBS-CT,
the discrete timesteps are replaced by time intervals. A time
interval [lb, ub] in the reservation table for a cell c has an
associated value v that indicates the number of agents oc-
cupying c during [lb, ub]. In addition, c’s time intervals are
not necessarily disjoint. Thus, a suitable data structure is re-
quired to efficiently maintain the reservation table. For this
purpose, we use the interval map (Cormen et al. 2009). It
supports efficient insertion, deletion, search and aggregate-
on-overlap operations. The aggregate-on-overlap operation

Algorithm 2: SCIPP
Input: Start and goal states (sj and gj), hard constraints,

reservation table, w ≥ 1.
Output: A w-suboptimal plan from sj to gj .

1 root nodes ← InitializeNodes(sj).
2 Push root nodes to OPEN and conditionally to FOCAL.
3 while FOCAL �= ∅ do
4 n ← Pop(FOCAL).
5 if n is a goal node then return plan.
6 for each n′ ∈ GenerateSuccessorNodes(n) do

7 N ← Merge n′ into GENERATEDLIST.
8 Push/Update OPEN and FOCAL according to

N .
9 Update FOCAL if necessary.

10 return no solution.

combines (separates) the associated values of intersecting
time intervals on insertion (deletion) with the same com-
plexity as the insertion (deletion) operation. Figure 1(c) il-
lustrates the aggregate-on-overlap operation. The insertion
(deletion) operation can be done in logarithmic time unless
the query interval overlaps with all existing intervals. For-
tunately, this rarely happens in MAMP problems due to the
locality of motion primitives. The usage of interval maps for
the reservation table facilitates an efficient detection of the
earliest conflict in the high-level search and an efficient com-
putation of secondary heuristic values for focal search in the
high and low-level searches.

SCIPP

Since focal search with discrete timesteps is vital for MAPF
solvers, an efficient generalization of it to continuous time is
required for ECBS-CT. While SIPP can be used to efficiently
reason about continuous time and the hard constraints spec-
ified by the high-level node, it unfortunately cannot be used
to reason about the soft conflicts specified in the reservation
table of the high-level node. Therefore, SIPP is not suitable
for focal search. Instead, we develop SCIPP to serve the pur-
pose of the low-level focal search of ECBS-CT. SCIPP not
only efficiently reasons about continuous time and hard con-
straints but also successfully reasons about soft conflicts and
derives secondary heuristic values from them.

Given a start state sj , a goal state gj and a list of safe
time intervals for each cell, SIPP finds a plan from sj to gj

with minimum arrival time at gj . This plan also guarantees
that no cell is swept outside its safe time intervals. In SIPP, a
node n represents an (s, [lb, ub]) pair where s is a state and
[lb, ub] is a safe time interval of s. The successor n′ of n
represents a valid transition from s to s′ via a legal motion.4
g(n) represents the earliest arrival time to s within [lb, ub].
Thus, when generating n′, g(n′) is updated to be g(n)+ d if
g(n′) > g(n) + d, where d is the duration of the motion.

Algorithm 2 presents SCIPP, a generalized version of
SIPP suitable for focal search. It takes as input a start state

4A motion is legal if it sweeps each of its associated cells only
during its safe time intervals.
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Figure 1: (a) shows an environment with 36 cells (grey squares) and a motion primitive (s, s′) in blue from s to s′. At s and s′,
the agent occupies cells [8, C] and [2, B], respectively. Black circles depict swept cells throughout the motion. (b) illustrates the
difference between SIPP and SCIPP. The x-axis represents time and the y-axis represents different states. A red dot between
s and s′ (on the horizontal line for s′) represents a hard constraint at the time of its x-coordinate at an intermediate swept cell
(destination cell) of (s, s′). In both SIPP and SCIPP, the safe time interval for s is [0, 120). In SIPP, the safe time intervals for
s′ are [0, 80) and (80,∞). The black markers indicate the earliest arrival times within these time intervals, serving as g-values.
The red regions indicate blocked execution times; and the slope of the parallelograms indicate the duration of (s, s′). In SCIPP, a
yellow horizontal line between s and s′ (on the horizontal line for s′) represents a soft conflict during the time interval between
its end-point x-coordinates at an intermediate swept cell (destination cell) of (s, s′). The time intervals of s′ are subdivided
such that each has a constant number of soft conflicts, depicted with blue labels. (c) shows three agents sweeping the incircled
cell during overlapping time intervals. The aggregate-on-overlap operation produces 4 time intervals, each with an associated
number of soft conflicts, as indicated in black.

sj , a goal state gj , a list of hard constraints for each cell c
and a reservation table, as specified in the high-level node.
It outputs a w-suboptimal plan from sj to gj for the spec-
ified value of w without violating any hard constraints. As
in SIPP, each node represents an (s, [lb, ub]) pair. GENER-
ATEDLIST is a hash table of all generated nodes. It maps
a state s to a list L(s) of all generated nodes having s as
their state. The time intervals of all nodes in L(s) are main-
tained to be disjoint. For each time interval [lb, ub] of a node
n ∈ L(s), lb represents the earliest possible arrival time to
n via n’s predecessor without violating any hard constraint.
Thus, g(n) = lb. ub − lb represents the maximum wait du-
ration at n while retaining the same number of soft conflicts
and without violating any hard constraints. The secondary
heuristic value of n equals its number of soft conflicts, de-
fined to be the number of cells in which the plan from sj

to s collides with any other agent’s plan, as specified in the
reservation table.

The main loop in lines 3-9 performs a focal search af-
ter initialization in lines 1-2. InitializeNodes(sj) in line
1 generates a list of nodes corresponding to disjoint time
intervals between 0 and the earliest hard constraint im-
posed on any cell associated with sj . Each time inter-
val in this list has a constant number of soft conflicts.
GenerateSuccessorNodes(n) in line 6 generates all suc-
cessors of n. Like in SIPP, n′ represents a valid transition
from s to s′ via a legal motion. In SCIPP, the time interval
of n′ may have to be split up to disjoint time intervals so that
the number of soft conflicts associated with each remains
constant. Thus, more nodes may have to be created, one for
each disjoint time interval. Figure 1(b) illustrates this pro-
cess. Here, split time intervals are created by first generating
“arrival” time intervals with respect to the hard constraints

and soft conflicts on the swept cells of the motion, and then
extending these arrival time intervals with respect to the hard
constraints and soft conflicts on the cells associated with s′
in order to reason about possible waiting at s′.

The mechanism of duplicate detection in focal search is
implemented using Merge in lines 7-8. The subtlety for
continuous time is the possibility of a generated node n′ hav-
ing the same state s′ as a different node n′′ already in GEN-
ERATEDLIST such that their time intervals overlap. Re-
gardless of the different ways in which the two time intervals
may overlap, the Merge process restores the invariant that
all nodes in L(s′) are disjoint and each has a constant num-
ber of soft conflicts. The Merge process can either: (1) add
the newly created nodes from GenerateSuccessorNodes
to GENERATEDLIST and push them to OPEN and condi-
tionally to FOCAL; or (2) update the time interval of the
existing nodes in GENERATEDLIST and thus also update
their priorities in OPEN and FOCAL. For example, sup-
pose n′′ has a soft conflicts, n′ has b < a soft conflicts,
lb′′ ∈ [lb′, ub′] and ub′ ∈ [lb′′, ub′′]. After Merge, GEN-
ERATEDLIST has nodes n1 and n2 with state s′ and time
intervals [lb′, ub′] and [ub′, ub′′], respectively. The number
of soft conflicts for n1 and n2 is b and a, respectively. Fi-
nally, n1 is a new node pushed to OPEN and conditionally
to FOCAL, while n2 is the updated n′′ with a larger g-value
of ub′.

Experiments

We present experimental results for 2 different environment
maps and 2 different motion primitives.5 The environments
are 2 benchmark maps from the Grid-Based Path Planning

5taken from https://movingai.com/GPPC/ and http://sbpl.net/, respectively
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(a) (b) (c) (d)

Figure 2: (a) shows the Arena map with 49 × 49 cells. (b) shows the Den520d map with 256 × 257 cells. (c) and (d) show
the Unicycle and the PR2 motion primitives for (x, y, θ) in 5 × 18 free cells for the start state depicted in blue. For a motion
primitive, a black line represents the trajectory of the center of the agent’s footprint and a red triangle at the end of it represents
the orientation at the destination state.
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Table 1: shows a matrix of experimental results for the 2 different maps and the 2 different motion primitives from Figure 2. 4
different values of the suboptimality bound, w, are used, including w = 1 for the optimal MAMP solver.

Competition (GPPC). The 2 maps, Arena and Den520d, as
shown in Figures 2(a)&(b), are representative of obstacle-
rich environments. The motion primitives are taken from
the Search-based Planning Laboratory (SBPL). The 2 prim-
itives, Unicycle and PR2, as shown in Figures 2(c)&(d), are
popularly studied. In the Unicycle (PR2) setup, there are 16
discrete orientations, each with 5 (13) primitives. Like in
ECBS, we precompute the perfect single-agent heuristic in
the environment. This is used for single-agent planning in
SCIPP.

We generated MAMP problem instances with different
numbers of agents. The varying numbers of agents in each
setup, with increments of 2 (5) in the Arena (Den520d)
map, are indicated in Table 1. For each value of the num-
ber of agents, the reported results are averaged over 25 ran-
domly generated instances. Each run is given a time limit
of 100 seconds; and the runtime average uses 100 seconds
for a timed-out run. We evaluated ECBS-CT with w =
1, 1.2, 1.5, 2. All experiments used a core i7-7700 CPU with
16GB RAM.

For all combinations of maps and motion primitives, we
observe that the w-suboptimal solvers with w > 1 are sig-
nificantly better than the optimal solver, both in terms of
runtime and success rate. This observation shows the power
of our bounded-suboptimality framework for MAMP. The
w-suboptimal solvers also exhibit the “diminishing returns”
property with increasing w. This means that ECBS-CT with
w = 1.2 or 1.5 is not only effective for the reason that w
is small but also efficient in finding solutions. Moreover, for
most instances, ECBS-CT with w > 1 produces a solution
with a suboptimality guarantee that is significantly smaller
than the suboptimality bound w.6 For example, when w = 2,
the average suboptimality guarantee is 1.17 for 50 agents in
the Arena map with the PR2 motion primitives.

The Arena map is much smaller than the Den520d map.
Thus, single-agent plans in the Arena map tend to be shorter.
However, with increasing numbers of agents, the number
of conflicts that ECBS-CT needs to resolve increases more

6The suboptimality guarantee for each instance is the ratio of
the solution cost to fmin. This ratio is ≤ w by design.
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rapidly in the Arena map due to a higher density of agents.
The PR2 motion primitives are richer than the Unicycle mo-
tion primitives. Specifically, they include the possibility of
turning in place and moving sideways. Therefore, the PR2
motion primitives have a larger branching factor but also al-
low for more flexibility. In the smaller Arena map, the flexi-
bility in the PR2 motion primitives helps ECBS-CT resolve
more conflicts, thereby increasing the success rate for higher
numbers of agents. In the larger Den520d map, the smaller
branching factor of the Unicycle motion primitives helps
SCIPP find longer plans more quickly, thereby increasing
the success rate for higher numbers of agents.

Our results show that ECBS-CT is viable for solving
realistic MAMP problems efficiently. Compared to other
solvers, ECBS-CT not only solves a richer problem than
MAPFR but also scales to larger numbers of agents in
obstacle-rich maps.

Conclusions and Future Work

We introduced the MAMP problem, a generalization of
the MAPF problem for kinodynamically constrained agents.
We presented ECBS-CT, a generalization of ECBS that ef-
ficiently reasons with continuous time. In the high-level
search, this requires a proper consideration of complete-
ness, w-suboptimality and Zeno behaviors. In the low-level
search, this requires efficient data structures for the reserva-
tion table and a generalization of SIPP to reason with soft
conflicts and thereby enable the use of focal search. Exper-
imental results demonstrate the promise of our approach.
There are many avenues for future work, including heuris-
tic guidance for high-level search, different heuristic designs
for the low-level search and evaluating motion primitives
with velocity considerations, among others.
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