
Zero-Aware Pattern Databases
with 1-Bit Compression for Sliding Tile Puzzles

Robert Clausecker, Alexander Reinefeld
Zuse Institute Berlin

Takustraße 7, 14195 Berlin, Germany

Abstract

A pattern database (PDB) is a pre-computed lookup table
storing shortest distances from abstract states to abstract goal
states. PDBs are key components in heuristic search as their
entries are used to prune paths that cannot lead to an optimal
solution. With the sliding-tile puzzle as an exemplary appli-
cation domain, we present methods to improve the precision
and size of PDBs by

• improving additive pattern databases to zero-aware addi-
tive pattern databases (ZPDBs),

• reducing the compression rate from 1.6 to 1 bit per entry,
• generating optimal additive pattern partitionings, and
• building effective collections of pattern databases.

With these enhancements, we achieve an overall 8.59-fold
performance gain on the 24-puzzle compared to the previ-
ously best set of 6-tile PDBs.

1 Background

Heuristic search can be improved by either devising faster
search algorithms or by building better heuristics. While
search algorithms like A*, IDA* (Korf 1985) and its many
derivatives seem to be reasonably well understood by now,
developing powerful heuristics that prune most effectively
remains a challenging research topic.

Pattern databases (PDBs) are heuristics in the form of
memory tables (Culberson and Schaeffer 1996; Korf and
Felner 2002). A PDB maps the state of a planning task onto a
much smaller, abstract state of a subset of the original vari-
ables, i. e. the pattern. The reduced problem in the pattern
space is exhaustively solved with a breadth-first search start-
ing backwards from the abstract goal state and storing the
optimal distances for every abstract state in the PDB. These
precomputed h-values from the pattern space can be ac-
cessed in the search process in constant time, making PDBs
a most efficient heuristic.

Many application domains like planning, optimization,
model checking, or sequence alignment benefit from the
use of PDBs. We have chosen the sliding-tile puzzle as our
model problem. In an n-puzzle, a square tray is filled with
n tiles, leaving one spot empty so that an adjacent tile can

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2 14 15 8

13 4 10

12 11 1 6

7 3 5 9

−−−−−−→

2

1 6

7 3 5

Figure 1: A configuration of the 15-puzzle as seen by the
{1, 2, 3, 5, 6, 7} APDB

be shifted into it. The task is to find a shortest path from
a given configuration to the goal configuration in which all
tiles in the tray are sorted.

Finding out what information to store in a PDB was
the subject of many research projects. The earliest pattern
databases (Culberson and Schaeffer 1996) contain lower
bound heuristics derived by counting for each configuration
the number of moves of pattern tiles and non-pattern tiles to
the goal position. As in practice no single PDB can be op-
timal for the whole search space, often multiple PDBs are
accessed. Taking the maximum h-value from several PDBs
gives an admissible (non-overestimating) heuristic that can
be used to compute f(n) = g(n) + h(n) in an A* search,
where g(n) is the cost to node n and h(n) is the estimated
cost from n to a goal node.

Six years later, Korf and Felner (2002) introduced the
more powerful disjoint PDBs which were later renamed ad-
ditive PDBs (APDBs). They allow us to sum the h-values
of disjoint PDBs, thereby providing an often tighter lower
bound on the true goal-distance. APDBs are constructed by
tracking only the pattern tiles and disregarding the rest. The
blank is not treated as a tile; methods to exploit its location
for higher h values were designed (Felner, Korf, and Hanan
2004; Felner et al. 2007; 2004; Helmert, Sturtevant, and Fel-
ner 2017), but lead to inconsistent PDBs.

Overview of Contributions

The remainder of this paper is structured along our main
contributions.

In Sec. 2 we extend the previous work on APDBs by not
only computing the maximum distance to the blank (zero-
tile) to its destination, but by also tracking the regions in

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

35

1 2 3

5 6

7
−−−−−−→

1 2 3

5 6

7
−−−−−−→

1 2 3

5 6 7

Figure 2: A partial puzzle configuration in the {1, 2, 3, 5, 6, 7} APDB with h = 2. Regardless of where the zero tile is located,
more than the two moves depicted here are needed to actually transition into the solved partial configuration.

which the blank may reside. The resulting zero-aware pat-
tern database (ZPDB) is both admissible and consistent.
This improves the pruning power 1.61 fold in the 25-puzzle
and we conjecture that even better gains can be expected in
larger search spaces.

In Sec. 3 we make use of the fact that the search space
of sliding tile puzzles is bipartite, a property that transfers
to APDBs and ZPDBs. We use this to demonstrate that the
previously best compression rate of 1.6 bit per entry (Breyer
and Korf 2010a) can be reduced to 1 bit.

In Sec. 4 we search for partitionings of the 24 puzzle’s
tiles into 4 PDBs of 6 tiles. Modelling this problem as
a matching on hypergraphs, we determine the 6-tile par-
titioning with maximum average h-value and compare it
to the one used in the literature (Korf and Felner 2002;
Breyer and Korf 2010a; Felner et al. 2004).

In Sec. 5 we follow the observation that the maximum h-
value of several small PDBs often perform better than using
a single large PDB (Holte et al. 2004) because it reduces
the number of low h-values which are most critical for the
search efficiency. As the selection of an optimal collection
of PDBs is still an open question, we present a heuristic ap-
proach to select a good set, reducing node expansions by a
factor of 5.04 compared to a single PDB set.

2 Zero-Aware Additive Pattern Databases

An Additive Pattern Database (APDB) as introduced by
Korf and Felner (2002) is a lookup table that stores for some
set of puzzle tiles the number of moves needed to transi-
tion these tiles into their goal positions, disregarding the po-
sition of other tiles, see Fig. 1. Clearly, this number is a
lower bound for the number of moves needed to solve the
full puzzle. In comparison to the earlier non-additive pattern
databases introduced by Culberson and Schaeffer (1996), the
h-values predicted by multiple APDBs for pairwise disjoint
tile sets can be added to form an admissible h-value that
is generally much higher than the h-value of any individual
additive or non-additive pattern database, leading to a search
performance that is often at least an order of magnitude bet-
ter than all previous heuristics (Korf and Felner 2002).

The performance of disjoint pattern databases was further
improved by blank compression (Felner, Korf, and Hanan
2004; Felner et al. 2004) where the distance for each pos-
sible location of the blank spot or zero-tile is considered,
but only the minimum of them is stored. As apparent from
Fig. 2, this can improve the h-value substantially.

Rethinking the Blank

In contrast to previous work (Felner, Korf, and Hanan 2004;
Felner et al. 2007; 2004; Helmert, Sturtevant, and Felner
2017) we have analyzed how well pattern databases per-
form when storing a separate entry for each possible posi-
tion of the zero tile. We believe this approach is interest-
ing, because it gives a higher h-value with the same pat-
tern database without sacrificing additivity or consistency,
enabling further improvements that might require either. We
call an additive pattern database that keeps track of the zero
tile a zero-aware additive pattern database (ZPDB).

As observed by Felner (2001) it is generally not necessary
to store one entry for each possible position of the zero tile.
Instead we determine which connected regions the zero tile
could be located in and store one entry for each such zero-
tile region (cf. Fig. 3).

Fortunately, only few partial configurations have many
zero-tile regions, while a majority of them only have one or
two. Tab. 1 shows that the increase in memory space needed
to track the zero-tile regions is moderate. For example, con-
figurations of 6 tiles in the 24-puzzle have only 1.42 regions
on average. Storing one entry for each region increases the
storage requirement from 121.60MiB1 to just 172.62MiB,
a very feasible amount in times of growing RAM sizes.

A similar approach has been used by Döbbelin, Schütt,
and Reinefeld (2013) to generate APDBs with blank com-
pression. Instead of storing one entry for each zero-tile re-
gion, open and closed lists for each zero-tile region are kept
as bit maps. Their largest APDBs have 9 tiles for the 24-
puzzle where up to 8 zero-tile regions can occur, allowing
them to store the bit maps for the open and closed lists in
one byte per APDB entry.

Fast and Compact Mapping

Prior work (Felner, Korf, and Hanan 2004; Felner et al.
2004) has distinguished two primary representations for
pattern databases. In the sparse mapping a k-tile APDB
for a puzzle with n grid locations is represented as a k-
dimensional array with nk entries where each entry stores
the h-value for the configuration with tiles at the grid loca-
tions indicated by the array indices. In the compact mapping,
a perfect hash function is employed as a bijective map be-
tween puzzle configurations and {0, 1, . . . , s−1} where s is
the number of configurations in the database (see Tab. 1). In-

11MiB = 220 bytes, 1GiB = 230 bytes

36

1 3 8 9

10 6 4

2 12 5 15

14 7 13 11

1 3

6 4

2 5

7

(a) (b)

© © A A

B © A ©
© C © D

E © D D

1 3

© 6 4

2 © 5 ©
© 7 © ©

(c) (d)

Figure 3: (a) A configuration of the 15-puzzle (b) as seen
by the {1, 2, 3, 4, 5, 6, 7} APDB (c) its possible zero-tile
regions and (d) as seen by the corresponding ZPDB with
the blank in region A.

version tables (Knuth 1998) are typically employed for this
purpose.

While sparse mappings have a significantly better runtime
performance, they waste a considerable amount of mem-
ory space without gaining additional information or improv-
ing h-values. A 6-tile APDB in sparse mapping for the 24-
puzzle contains as much as 47.78% invalid entries, climbing
to 71.42% for an 8-tile APDB. Even more space is wasted
for ZPDBs as we have to account for the maximum, not
average number of zero-tile regions. While this waste of
space may be acceptable for searches using few small pat-
tern databases, the exploration of larger pattern databases or
collections of pattern databases is hindered. For this reason
we have not further considered sparse mappings.

Using ZPDBs instead of APDBs increases the storage re-
quirements by only a modest amount, improves the h-values
significantly and does not block the way to further optimisa-
tions.

To represent ZPDBs by means of a compact mapping,
we have developed a reasonably fast perfect hash function
(Clausecker 2017) that is also applicable to APDBs. The key
idea, illustrated in Fig. 4, is to represent a k-tile ZPDB en-
try as a tuple (m, p, r) where m indicates which grid loca-
tions are occupied by tiles in the configuration, p indicates
how the tiles are permuted within these grid locations, and
r indicates which region the zero tile is located in. The num-
ber of zero-tile regions depends only on m. This allows to
split the database into

(
n
k

)
cohorts, each being represented

by a rectangular array containing the ZPDB entries for all
permutations and zero-tile regions within this cohort. A 6-
tile ZPDB of the 24-puzzle, for example, can be split into(
24
6

)
= 134 596 cohorts.

For a given configuration, m and p can be computed
rapidly using bit-fiddling algorithms. The value of r and the

k APDB size ZPDB size avg max

2 600 608 1.01 2
3 13 800 14 472 1.04 2
4 303 600 339 048 1.12 3
5 6 375 600 7 871 280 1.23 4
6 127 512 000 181 008 000 1.42 5
7 2 422 728 000 4 066 655 040 1.68 6
8 43 609 104 000 87 358 400 640 2.00 7
9 741 354 768 000 1 759 513 674 240 2.37 8

10 11 861 676 288 000 32 787 717 580 800 2.76 10
11 177 925 144 320 000 560 680 553 664 000 3.15 11
12 2 490 952 020 480 000 8 749 801 518 796 800 3.51 13

Table 1: The number of configurations in any k-tile APDB
and ZPDB for the 24-puzzle and the average and maximal
number of zero-tile regions per APDB configuration.

number of zero-tile regions for the given m are looked up in
an auxiliary table that is shared among all pattern databases
of the same tile count. While the treatment of r is specific
to n-puzzles, the remaining scheme is general and readily
transfers to other problems and state abstractions.

Transpositions

The first work (Korf and Felner 2002) on additive pattern
databases already used transpositions and rotations to map
puzzle configurations in the three congruent PDBs in their
PDB set for partitioning (a) from Fig. 6 to just one database.
At the same time, they did another set of PDB lookups with
the transposed configuration, taking the maximum of the two
h-values to improve the heuristics. In our research, we too
used this method called transposition search for the figures
in this paper. Furthermore, we adapted rotations and trans-
positions to ZPDBs.

Pattern databases for sliding tile puzzles on quadratic
trays can be rotated in increments of 90◦ and transposed ac-
cording to their symmetry group in 8 ways with their tiles
renumbered appropriately. Let π be the tile permutation of
some puzzle configuration and let τ be some combination of
rotations and transpositions. Then for APDBs,

πτ = τ ◦ π ◦ τ−1 (1)

is the configuration we get when applying τ to π. If we look
up πτ in a pattern database for which this transformation is
valid, we get an admissible additive h-value.

For ZPDBs, we have to ensure that the zero tile stays in
place, giving

πτ =
(
0, τ(0)

) ◦ τ ◦ π ◦ τ−1 (2)

where
(
0, τ(0)

)
indicates an exchange of the zero tile with

what the zero tile is mapped to by τ . This maps the zero tile
back to where it was before the transformation. This works
for all pattern databases valid for this transformation as they
cannot contain tile τ(0).

Transformations are not always possible: no tile in a
PDB can be rotated to become the empty spot. Transformed
ZPDBs in addition yield wrong values if the region contain-
ing the zero tile changes. Accounting for these possibilities,

37

1 3

© 6 4

2 © 5 ©
© 7 © ©

© ©
© ©

© ©
©

(m, p, r) m = 2027

(
1 2 3 4 5 6 7
1 3 6 4 2 5 7

)
A A

A

p = 198 r = 0

Figure 4: The 15-puzzle configuration from Fig. 3 as seen
by the {1, 2, 3, 4, 5, 6, 7} ZPDB and the components of the
corresponding index.

the
(
24
6

)
= 134 596 PDBs with 6 tiles fall into 22 440 classes

of APDBs or 29 285 classes of ZPDBs equivalent under
transposition and rotation.

A related strategy called dual search (Felner et al. 2005;
Zahavi et al. 2008) was evaluated but ultimately rejected as
it does not allow efficient use of bitmapped pattern databases
as introduced in Sec. 3.

Empirical Results

We compared the performance of the described APDBs and
ZPDBs on a system with Intel Xeon E3-1290 v2 running
at 3.70GHz. Our implementation performs 8.88 million
APDB lookups and 8.16 million ZPDB lookups per second
to 6-tile pattern databases of the 24-puzzle. APDB lookups
are about 8% faster as they do not require table lookups for
zero-tile regions and cohort table sizes.

The slightly slower lookup speed of ZPDBs is more than
compensated by their better pruning power. Comparing the
performance of partitioning (a) from Fig. 6 with and without
blank compression (see Fig. 7), we found a 1.61-fold (σ =
0.40) node count reduction on average. In the best case, a
reduction by 3.63 is achieved and in the worst case still 1.19.
This is more than double the lookup overhead of ZPDBs
over APDBs, making ZPDBs always beneficial if there is
enough memory space.

Note that our results nicely confirm the prediction of Korf
(2007) that the performance gain should be about propor-
tional to the size increase of the PDB: In case of the 6-tile
PDB the mentioned improvement by a factor of 1.61 is paid
by a 30% increase in space consumption shown in Tab. 1.

3 1-Bit Pattern Databases

Breyer and Korf (2010a) introduced a compact lossless rep-
resentation for consistent pattern databases that reduces the
amount of storage required for a consistent pattern database

8 9 10 11

12

2

6

10

14 15

(a) (b)

0 1

5

9

13

1

5

9

12 13

(c) (d)

Figure 5: (a) Tiles of the {8, 9, 10, 11, 12} PDB (b) valid
rotation by 270◦ (c) invalid rotation by 90◦ (0 is not a tile)
and (d) valid transposition (yields a different ZPDB)

to 1.6 bits per entry. But as they argue (ibid.), this technique
does not help in compressing the h-values of inconsistent
6-tile APDBs produced by the method of Korf and Felner
(2002). This is because the high inconsistency rate2 requires
4 bits per entry, which can also be achieved by simply stor-
ing the addition to the Manhattan distance per entry.

The key idea of Breyer et al. was to use the property
of consistent heuristics that the h-values of adjacent search
nodes differs by at most 1. Given that in a typical search
algorithm, h-values are looked up along a path through
the search space, it suffices to quickly decide whether the
h-value of a node is higher, equal, or lower than the h-
value of its predecessor. This can be done by storing the h-
value modulo 3, giving a storage requirement of log2(3) =
1.59 bits per entry. By storing 5 entries in a byte, a density
of 1.6 bit per entry is achieved using 35 = 242 of the 256
possible bit patterns in a byte.

We improved this representation to 1 bit per entry, reduc-
ing the PDB size while at the same time avoiding the com-
plicated bit-stuffing needed for the 1.6 bit representation.
Our improvement is based on the observation that the search
spaces of both n-puzzles and PDBs for them are bipartite,
a property shared with many other puzzles such as the Ru-
bik’s Cube (with quarter turn metric). Instead of storing the
remainder of the h-value modulo 3, we store the remainder
modulo 4 and discard the least significant bit as it is known
to flip with every step through the search space; if needed,
it can be reconstructed from the configuration’s parity. The
resulting representation needs just 1 bit of storage per entry.

This bitmap representation reduces the storage require-
ments of our implementation 8-fold for a 6-tile ZPDB of
the 24-puzzle, consuming just 21.58MiB storage for its
181 million entries. Similarly, an 8-tile ZPDB consumes just

2The inconsistency rate is the maximum distance of the h-
values of any two successive nodes (Zahavi et al. 2007).

38

(a) orig (b) new

Figure 6: Two partitionings of the 24-puzzle into 6-tile
PDBs: (a) the partitioning commonly used in literature
(h̄ = 81.82) and (b) the optimal partitioning (h̄ = 82.06).

10.17GiB memory space, allowing us to explore searches
with 8-tile ZPDBs on standard computers.

To crosscheck the effectiveness of our 1 bit data represen-
tation, we applied the zstandard general purpose compres-
sion algorithm (Collet and Kucherawy 2018) to our ZPDB.
Surprisingly, we were able to further compress the described
6-tile ZPDBs to 5.66MiB on average. This suggests that an
even better representation may reduce the size further.

Performance

The 1-bit compression gives an 8-fold reduction of the mem-
ory space compared to a representation with 1 byte per entry
without loss of heuristic performance and with only insignif-
icant loss of speed. When additionally applying the zstan-
dard compression algorithm on disk and decompressing the
required PDBs once at the beginning of the search, the disk
usage was reduced 30.5-fold compared to storing uncom-
pressed PDBs with one byte per entry.

4 Finding Optimal Partitionings

While there are
(
24
6

)(
18
6

)(
12
6

)(
6
6

)/
4! = 9.62 × 1010 dif-

ferent partitionings of the 24-puzzle’s tiles into 6-tile pat-
tern databases, not much research has gone into analysing
which of them perform best. Indeed, prior research on the
24-puzzle generally uses partitioning (a) from Fig. 6 first
described by Korf and Felner (2002). This partitioning was
originally chosen because it requires only two distinct ta-
bles to be kept in memory and went with the intuition that
compact tile regions capture the highest amount of interac-
tions between tiles. Later it was speculated (Breyer and Korf
2010a; Felner et al. 2004) that this is probably the most ef-
fective 6-6-6-6 partitioning, but no evidence was given.

It is hard to say whether one partitioning is better than an-
other. In the following, we judge the precision of the heuris-
tic given by a partitioning using its average h-value h̄, as-
suming that a PDB set with higher h̄ performs better than
one with lower h̄.

While this is not the most accurate measure, it is easy to
estimate by uniform sample and widely used in the litera-
ture. A better measure of precision is given by Korf and Reid
(1998), but is difficult to compute for PDB collections and
does not give a single number to compare.

Globally Optimal Partitionings

To find the 6-6-6-6 PDB set with maximum h̄, we first gen-
erated all 6-tile ZPDBs and their average h-value h̄. This
was done by generating all 29285 distinct 6-tile ZPDBs and
storing them as compressed bitmaps using the method from
Sec. 3, requiring a total of 161.79GiB storage space.

Then we computed the partitioning with the best h̄ by first
finding the best partitionings for all half trays (12 tiles) into
two PDBs with 6 tiles each and matching them with the
best partitioning of the other halves. This method reduces
the number of partitionings that need to be checked from the
aforementioned 9.62 × 1010 to

(
24
12

)(
12
6

)(
6
6

)/
2! = 1.25 ×

109 half tray partitionings and
(
24
12

)(
12
12

)/
2! = 1.35 × 106

matches between halves while still being guaranteed to find
the global optimum.

As a result of the search we found the “new” partitioning
(b) in Fig. 6 with h̄ = 82.06 compared to h̄ = 81.82 of
partitioning (a) which was previously used in the literature.
However, the empirical results in the Appendix shows that
partitioning (b) beats partitioning (a) in only 28 of Korf’s
50 instances. Despite having a significantly higher average
h-value, its performance is comparable to partitioning (a).
This calls into question whether h̄ is really a suitable mea-
sure for the quality of a heuristic function.

Locally Optimal Partitionings

The effectiveness of pattern databases varies depending on
the puzzle configuration we try to solve. For example, as
seen in the empirical results listed in the Appendix, parti-
tioning (a) often beats partitioning (b) despite its lower h̄.
We believe this might be due to h̄ being an imperfect quality
indicator and different tile interactions mattering in different
parts of the search space. To capture these differing inter-
actions, there is likely no single optimal partitioning for the
entire search space.

To address this issue, we extend the method from Sec. 4
to find partitionings optimal for a single configuration as op-
posed to the whole search space. As a simple measure of op-
timality, we try to find a partitioning with maximal h-value
for the chosen configuration. In case of a likely tie, the par-
titioning with maximal h̄ is chosen. This partitioning is then
used for an IDA* search.

In a way this approach is a variant of the Higher Order
Heuristics (Korf and Taylor 1996) which first used a maxi-
mum matching on ordinary graphs to select what can today
be seen as a partitioning made of 2-tile PDBs, recomputing
this matching for every node in the search tree. While this
generally yields less node expansions than the linear conflict
heuristic (Hansson and Mayer 1992), the savings are eaten
up by the computationally expensive matching. Our method
differs in that we compute the expensive matching once and
use the partitioning found for the rest of the search.

5 Pattern Database Collections

In the previous section, we found that no single partition-
ing is optimal for the entire search space. To remedy this
issue, it is intuitive to take the maximum of several par-
titionings known to be optimal in different parts of the

39

Figure 7: IDA* node expansions using 6-tile APDBs and ZPDBs on Korf’s fifty puzzle instances (Korf and Felner 2002). ‘Orig’
is the original 6-6-6-6 partitioning in Fig. 6(a), ‘new’ is the partitioning in Fig. 6(b), and ‘coll’ is the collection in Fig. 8. The
instances are sorted by new ZPDB nodes.

search space. We call such a set of partitionings a pattern
database collection3. The effectiveness of taking the maxi-
mum of several PDB heuristics has frequently been the focus
of research (Holte et al. 2004; Korf 2007; Breyer and Korf
2010b). In this paper, we try to contribute some insights into
what makes a good PDB collection.

Finding Good Collections

Holte et al. (2004) argue that maximizing over several
smaller PDBs “can make the number of patterns with low h-
values significantly smaller than the number of low-valued
patterns in the larger pattern database” and that “eliminating
low h-values is more important for improving search per-
formance than retaining large h-values.” We followed their
ideas and focused our efforts on building effective collec-
tions of 6-6-6-6 partitionings for the 24-puzzle. In doing so,
we took care to keep the number of distinct partitionings at a
reasonable size, as each additional table lookup slows down
the search. Following the principle of diminishing returns,
we add partitionings only as long as the speedup gained by
the reduced node expansions outweighs the slowdown from
looking into multiple PDBs. As in Sec. 4, we measure the
performance by the average h-value h̄.

Which new partitioning should be added to a given col-
lection? Consider the h-value given by a PDB collection for
a single puzzle configuration. For this h-value, the collec-
tion has to contain at least one partitioning that provides this
h-value. We call such a partitioning a support of this config-
uration’s h-value. All but one support may be removed from
the collection without reducing the h-value of this config-
uration. With this intuition we use the following informal
scheme (Clausecker 2017) to find a good collection of pat-
tern databases:

3In our previous work (Clausecker 2017) we used the term
pattern database catalogue. This was changed to match the es-
tablished terminology from Scherrer, Pommerening, and Wehrle
(2015).

1. Start with a set of known good partitionings,
2. sample the h-values of n = 100 000 000 random puzzles,
3. for each partitioning count how often it was an h-value’s

sole support,
4. remove partitionings from the collection which rarely

supported the maximum h-value,
5. add new partitionings to the collection to replace the re-

moved ones,
6. repeat steps 2–5 until no further improvements are found.

Fig. 8 depicts a PDB collection with h̄ = 83.08 that was
constructed with the described method. This is a consider-
able improvement over the best single 6-tile partition (b) in
Fig. 6 with h̄ = 82.06.

For partitionings (c) and (d) in Fig. 8 the sole-support fre-
quency seems low; this is explained by observing that most
configurations supported by one of the two is also supported
by the other; removing (c) leads to a sole-support frequency
of 3.62% for (d) while removing (d) leads to a frequency
of 2.74% for (c). As no PDB lookups are saved by removing
just one of the two, both are kept in the collection.

Performance

Applying the PDB collection from Fig. 8 to Korf’s 50 in-
stances (Korf and Felner 2002) as ZPDBs, we find that
the number of expanded IDA* nodes is reduced 5.04-fold
(σ = 2.64) on average compared to using just parti-
tioning (b) from Fig. 6, as shown in the Appendix. The
least reduction found was 2.15 while the highest reduction
was 15.20. This is contrasted with a 3.5-fold increase in run-
time per expanded node due to the need to query more pat-
tern databases.

As seen nicely in Fig. 7, the PDB collection keeps all val-
leys from other heuristics while avoiding the peaks.

6 Related Work
Much research has been spent on PDBs since their intro-
duction by Culberson and Schaeffer (1996) and extension

40

A B

C D

E F

C D

A B

G

H

E F

G

H

(a) 2.21% (b) 4.49% (c) 0.83% (d) 1.72%

I B

K D

E

L M

C

I B

N

O

(e) 5.18% (f) 7.15% (g) 4.77%

Figure 8: A PDB collection created with the method in Sec. 5. For each partitioning, the frequency of this partitioning being
the sole support of a configuration’s h-value is given.

to additive patterns by Korf and Felner (2002); a broad
overview can be found in (Edelkamp and Schrödl 2012).
An idea similar to ZPDBs has previously been considered
by Felner (2001). In contrast to our ZPDBs, previous addi-
tive PDBs (Felner, Korf, and Hanan 2004; Felner et al. 2007;
2004) used lossy compression of the blank, thereby reducing
the space consumption at the cost of consistency. The more
general concept of min compression (Helmert, Sturtevant,
and Felner 2017) builds space-efficient, coarser abstractions
by compressing multiple finer ones. Min-compressed PDBs
can be as powerful as regular PDBs when using compatible
compression regimes.

Instance-dependent PDBs (Zhou and Hansen 2004; Fel-
ner and Adler 2005) are based on the observation that a
PDB constructed for a specific problem instance often con-
tains tighter bounds than a regular PDB. Clearly, instance-
dependent PDBs benefit also from the presented improve-
ments, namely ZPDBs, 1-bit compression and collections.

Our 1-bit compressed ZPDB entries are applicable to do-
mains with bipartite search spaces only. Entry compres-
sion (Felner et al. 2004; 2007) is a more general scheme.
It is motivated by the observation that nearby entries in the
PDB are often correlated, making it economical to store their
minimum in a single entry. Value compression (Sturtevant,
Felner, and Helmert 2017) saves storage space in applica-
tions with a large value range by keeping an interval rather
than a precise h-value per entry. In contrast to static pattern
partitioning schemes, dynamically partitioned PDBs (Fel-
ner, Korf, and Hanan 2004) divide the problem into disjoint
subproblems for each state of the search dynamically which
allows application specific value compression.

Symmetries in the PDB (reflections or rotations) have
been exploited since (Culberson and Schaeffer 1996). Dual

lookups (Felner et al. 2005; Zahavi et al. 2008) add a new
kind of symmetry by exchanging objects and their locations:
Instead of only checking a PDB for the location of the pat-
tern tiles and their minimal cost to their goal positions, it can
also be asked which tiles are currently in the pattern spots
and how many moves are needed to transform them into
their goal positions. This provides more information from
the same PDB, but it makes the heuristic inconsistent.

Cost partitioning (Pommerening et al. 2015) allows the
same tile to appear in multiple PDBs of a single set with-
out losing additivity by splitting the cost of moving tiles in
multiple PDBs among them. This can be used to increase
the number of additive PDBs in a PDB set without having to
reduce the number of tiles in each.

7 Conclusion

To prepare for the solution of previously intractable state
space search problems such as the 35-puzzle or beyond, we
have tried to find better heuristics at lower memory usage
without compromising the additivity property. To this end,
we introduced a zero-aware pattern database (ZPDB) that
requires 35% less node expansions than the previously best
6-tile PDB on the 24-puzzle. Our scheme for generating op-
timal partitionings of additive PDBs improved the number
of expanded nodes 1.15-fold, and maximizing the heuris-
tic over a reasonably sized collection of PDBs improves the
search performance by an additional factor of 5.04. Putting
all enhancements together, we achieve an 8.59-fold perfor-
mance gain with lower memory consumption due to the pre-
sented 1-bit compression.

41

Acknowledgements

We thank Thorsten Schütt for many fruitful discussions and
the unknown reviewers for their hints that helped to improve
the paper. We also thank the HLRN Supercomputer Alliance
for supporting us with computer time.

Appendix: Empirical Results

Expanded IDA* nodes for Korf’s 50 instances (Korf and Fel-
ner 2002) for the two 6-6-6-6 partitionings (a) and (b) from
Fig. 6 and the collection from Fig. 8. Each heuristic was
tried both as an APDB and as a ZPDB heuristic. Transposi-
tion search was used for all searches.

no (a) APDB (b) APDB coll. APDB
(a) ZPDB (b) ZPDB coll. ZPDB

1 1 425 875 140 931 043 123 158 198 729
686 069 547 326 601 592 53 848 738

2 111 641 207 465 96 358 253 587 16 327 196 265
86 236 390 925 72 437 178 388 12 889 231 618

3 7 853 908 324 9 456 518 159 3 780 562 643
5 084 007 427 6 615 630 803 2 418 437 615

4 4 797 694 125 4 857 570 283 992 148 089
2 560 650 833 2 864 982 875 616 554 044

5 5 484 055 692 1 335 690 599 229 080 119
4 227 592 928 1 041 713 929 176 967 150

6 24 962 231 129 47 308 485 686 3 963 422 179
19 005 789 135 34 660 552 606 3 025 112 424

7 35 855 872 236 49 461 032 293 10 646 812 645
27 830 182 298 38 145 022 619 8 087 803 174

8 21 995 039 727 54 198 594 778 10 609 670 443
13 732 776 667 36 152 691 313 6 135 164 661

9 1 051 076 535 652 865 041 098 913 189 004 935 961
764 801 552 269 653 580 333 283 139 257 503 265

10 435 944 577 737 724 718 627 724 111 771 822 653
313 592 839 790 505 354 105 926 76 580 113 103

11 872 838 759 795 769 063 525 838 75 223 483 796
608 620 352 369 554 454 780 063 52 614 901 639

12 561 789 705 040 293 053 650 437 119 682 603 137
360 125 405 661 198 891 918 955 78 270 149 630

13 1 138 778 240 929 184 542 423 471 010
880 251 759 744 016 730 319 952 186

14 374 259 092 507 577 921 827 058 120 333 106 357
270 275 552 837 421 817 894 745 89 543 926 428

15 71 416 034 033 78 573 564 626 14 894 248 996
52 627 610 231 61 800 659 906 11 436 756 369

16 2 009 280 766 1 723 446 084 446 163 669
1 317 282 819 1 152 536 662 295 627 821

17 163 150 026 745 175 183 740 510 20 751 095 783
128 477 262 048 128 670 468 309 15 640 095 668

18 769 009 927 981 466 116 464 112 193 152 308 945
442 000 131 063 356 575 497 661 131 573 822 523

19 83 831 422 428 104 888 757 443 19 177 320 317
67 587 576 627 87 235 543 167 15 218 497 346

20 200 450 742 161 142 067 084 954 18 519 458 230
90 680 187 246 64 495 996 359 10 284 615 128

21 183 592 138 998 334 128 876 576 44 139 271 208
110 185 422 023 204 093 630 206 26 683 342 659

22 1 859 456 487 1 591 270 357 531 281 516
897 004 462 664 019 431 241 956 643

23 42 329 759 562 78 450 249 077 11 282 628 160
24 670 022 140 43 140 430 080 5 855 445 178

24 277 401 780 209 168 689 170 058 37 452 473 860
155 841 217 499 82 704 120 109 20 358 642 119

25 126 495 063 129 418 572 46 163 378
99 852 238 104 008 514 37 172 997

26 7 471 162 094 5 832 854 155 2 000 152 241
4 455 034 712 3 324 120 394 1 228 120 251

27 29 521 355 607 24 423 566 554 2 353 368 855
21 884 892 243 18 769 968 453 1 872 729 978

28 1 135 190 134 1 021 530 887 245 009 685
734 679 140 715 360 384 167 959 834

29 1 643 800 509 2 180 616 359 411 613 829
826 325 905 1 295 402 939 265 641 183

30 835 370 084 740 896 221 222 485 745
536 978 989 506 037 398 154 117 709

31 15 535 709 218 11 824 581 381 5 974 528 165
11 288 984 012 8 893 904 619 4 051 420 238

32 801 631 112 192 929 390 85 977 882
581 709 365 134 222 892 57 801 737

33 783 252 065 384 485 155 122 422 159 949 568 994
509 013 889 937 341 051 847 307 108 729 245 793

34 348 148 686 761 215 398 856 371 31 657 564 408
161 982 500 255 98 135 968 195 15 671 916 687

35 35 374 979 892 52 573 346 683 7 269 270 352
22 812 372 384 34 194 869 391 4 717 898 962

36 1 158 981 872 1 163 256 639 477 288 759
574 804 537 533 634 184 238 596 946

37 717 363 901 673 011 310 215 325 614
375 485 935 375 856 349 107 340 791

38 19 102 710 17 828 584 4 464 548
16 044 566 13 407 785 3 450 832

39 81 665 942 816 73 402 059 725 14 718 413 569
51 298 914 727 50 465 525 984 9 492 310 290

40 27 620 434 29 089 022 11 788 834
19 694 137 19 497 302 8 296 164

41 13 857 238 379 12 294 855 797 5 535 159 350
8 189 164 544 7 241 780 094 3 375 922 989

42 148 210 529 197 112 932 776 099 32 753 208 287
107 553 463 207 85 379 955 688 22 680 138 294

43 22 730 491 518 26 124 678 258 6 884 944 791
16 561 659 262 19 946 047 570 5 137 292 767

44 348 918 778 397 645 233 56 723 555
96 000 581 198 161 383 26 772 635

45 38 641 448 004 36 554 530 360 9 736 996 869
28 087 680 065 27 490 145 174 7 360 265 880

46 24 041 904 390 29 799 529 904 1 884 568 572
17 860 977 428 22 739 945 231 1 495 685 257

47 13 462 467 532 13 430 174 953 4 382 096 352
6 156 114 730 6 625 847 130 2 364 729 584

48 152 777 088 177 253 256 991 057 77 548 336 397
104 209 054 684 175 009 505 182 54 136 974 740

49 39 673 054 257 49 469 627 208 9 550 269 592
21 901 326 342 28 697 056 739 5 563 996 366

50 2 047 762 761 989 1 936 036 475 217 342 577 968 758
1 371 409 134 448 1 320 463 248 893 224 259 011 348

References

Breyer, T. M., and Korf, R. E. 2010a. 1.6-Bit Pattern
Databases. In Proceedings of the Twenty-Fourth AAAI Con-
ference on Artificial Intelligence, 39–44. AAAI Press / The
MIT Press.

Breyer, T. M., and Korf, R. E. 2010b. Independent Additive
Heuristics Reduce Search Multiplicatively. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, 33–38. AAAI Press / The MIT Press.

42

Clausecker, R. K. P. 2017. Notes on the Construction of
Pattern Databases. ZIB Report 17-59, Zuse Institute Berlin.
Collet, Y., and Kucherawy, M. S. 2018. Zstandard Compres-
sion and the application/zstd Media Type. RFC 8478, RFC
Editor.
Culberson, J. C., and Schaeffer, J. 1996. Searching with
Pattern Databases. Advances in Artifical Intelligence 402–
416.
Döbbelin, R.; Schütt, T.; and Reinefeld, A. 2013. Building
Large Compressed PDBs for the Sliding Tile Puzzle. ZIB
Report 13-21, Zuse Institute Berlin.
Edelkamp, S., and Schrödl, S. 2012. Heuristic Search –
Theory and Applications. Morgan Kaufmann.
Felner, A., and Adler, A. 2005. Solving the 24 Puzzle with
Instance Dependent Pattern Databases. In Abstraction, Re-
formulation and Approximation, 248–260. Springer.
Felner, A.; Meshulam, R.; Holte, R. C.; and Korf, R. E.
2004. Compressing Pattern Databases. In Proceedings of
the National Conference on Artificial Intelligence, 638–643.
AAAI Press / The MIT Press.
Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual Lookups in Pattern Databases. In Proceedings of
the 19th International Joint Conference on Artificial Intel-
ligence, 103–108.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. 2007.
Compressed Pattern Databases. Journal of Artificial Intelli-
gence Research 30:213–247.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive Pat-
tern Database Heuristics. Journal of Artificial Intelligence
Research 22:279–318.
Felner, A. 2001. Improving search techniques and using
them on different environments. Ph.D. Dissertation, Bar-Ilan
University.
Hansson, O., and Mayer, A. 1992. Criticizing Solutions to
Relaxed Models Yields Admissible Heuristics. Information
Sciences 63:207–227.
Helmert, M.; Sturtevant, N. R.; and Felner, A. 2017. On
Variable Dependencies and Compressed Pattern Databases.
In Proceedings of the Tenth International Symposium on
Combinatorial Search (SoCS 2017), 129–133. AAAI Press.
Holte, R. C.; Newton, J.; Felner, A.; Meshulam, R.; and
Furcy, D. 2004. Multiple Pattern Databases. In ICAPS-04
Proceedings, 122–131. AAAI Press / The MIT Press.
Knuth, D. E. 1998. The Art of Computer Programming,
volume 3. Addison-Wesley.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134(1-2):9–22.
Korf, R. E., and Reid, M. 1998. Complexity Analysis of
Admissible Heuristic Search. In Proceedings of the National
Conference on Artificial Intelligence. AAAI Press / The MIT
Press.
Korf, R. E., and Taylor, L. A. 1996. Finding Optimal Solu-
tions to the Twenty-Four Puzzle. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence, 1202–
1207. AAAI Press.

Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Korf, R. E. 2007. Analyzing the Performance of Pattern
Database Heuristics. In Proceedings of the National Con-
ference on Artificial Intelligence, 1164–1170. AAAI Press /
The MIT Press.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, 3335–3341. AAAI Press /
The MIT Press.
Scherrer, S.; Pommerening, F.; and Wehrle, M. 2015. Im-
proved pattern selection for PDB heuristics in classical plan-
ning. In Proceedings of the Eighth Annual Symposium on
Combinatorial Search (SOCS 2015), 216–217. AAAI Press.
Sturtevant, N. R.; Felner, A.; and Helmert, M. 2017.
Value Compression of Pattern Databases. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
912–918. AAAI Press / The MIT Press.
Zahavi, U.; Felner, A.; Schaeffer, J.; and Sturtevant, N. 2007.
Inconsistent Heuristics. In Proceedings of the National Con-
ference on Artificial Intelligence, 1211–1216. AAAI Press /
The MIT Press.
Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008.
Duality in permutation state spaces and the dual search al-
gorithm. Artificial Intelligence 172(4–5):514–540.
Zhou, R., and Hansen, E. A. 2004. Space-Efficient Memory-
Based Heuristics. In Proceedings of the National Confer-
ence on Artificial Intelligence, 677–682. AAAI Press / The
MIT Press.

43

