
Learning and Utilizing Interaction Patterns
among Neighborhood-Based Heuristics

Chung-Yao Chuang
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

cychuang@cmu.edu

Stephen F. Smith
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

sfs@cs.cmu.edu

Abstract

This paper proposes a method for learning and utilizing
potentially useful interaction patterns among neighborhood-
based heuristics. It is built upon a previously proposed frame-
work designed for facilitating the task of combining multi-
ple neighborhood-based heuristics. Basically, an algorithm
derived from this framework will operate by chaining the
heuristics in a pipelined fashion. Conceptually, we can view
this framework as an algorithmic template that contains
two user-defined components: 1) the policy H for selecting
heuristics, and 2) the policy L for choosing the length of the
pipeline that chains the selected heuristics. In this paper, we
develop a method that automatically derives a policy H by
analyzing the experience collected from running a baseline
algorithm. This analysis will distill potentially useful pat-
terns of interactions among heuristics, and give an estimate
for the frequency of using each pattern. The empirical results
on three problem domains shows the effectiveness of the pro-
posed approach.

1 Introduction
For many combinatorial optimization problems, a popu-
lar choice for heuristically finding a high quality solution
is to use a local search procedure that combines multiple
neighborhood-based operators, e.g. (Lourenço, Martin, and
Stützle 2010; Hansen et al. 2019; Nowicki and Smutnicki
2005). It has been shown that this approach can be scalable
and highly effective, and it has produced the best-known
solutions for a number of problem domains. However, de-
spite this approach’s popularity, how to actually structure
the application of constituent neighborhood-based heuris-
tics or operators remains largely an engineering art. Fre-
quently, they are put together in a very simplistic way: fol-
low a fixed, pre-specified order of application. As such, an
effort to generalize beyond this simplistic integration can po-
tentially yield a more versatile technique.

In a recent work, Chuang and Smith (2018) have con-
ceived a generalized framework for combining multiple
neighborhood-based heuristics. The fundamental idea of this
framework is to chain multiple heuristics in a pipelined fash-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ion so that we can better utilize interactions between heuris-
tics. To derive a concrete algorithm from this framework,
one needs to supply two user-defined components: 1) a pol-
icy H for selecting heuristics, and 2) a policy L for choosing
the length of the pipeline that chains the selected heuristics.
In their report, Chuang and Smith (2018) offered a theoret-
ical discussion on the design of the L component and de-
scribed a policy that has an asymptotic guarantee. They also
empirically showed that this policy can achieve promising
results. Based on their work, in this paper, we further ex-
plore how to design a good H component.

Our proposal is based on the idea that we can first run the
simple baseline algorithm proposed by Chuang and Smith
(2018), and record the positive experiences encountered dur-
ing the run. By analyzing this record of positive experiences,
we can potentially extract useful interaction patterns among
the heuristics, and accordingly, use this knowledge to con-
struct a good policy H.

In the following, we will first provide some background
and briefly describe the framework proposed by Chuang
and Smith, as well as its connection to a field called hyper-
heuristics (Burke et al. 2013).

1.1 Neighborhood-based Heuristics
In this paper, we investigate the task of combining multi-
ple neighborhood-based heuristics. The key property of this
class of heuristics that allows us to think about the possibil-
ity of combining them is the following: Given a solution x
as input, a neighborhood-based heuristic will perform mod-
ifications on x to produce another solution x′.

In general, the basic operations performed by this class
of heuristics is to modify the current solution x slightly or
to replace a portion of x with new values. These operations
can be iterated multiple times to arrive at a more distant so-
lution. To encapsulate this idea that we can obtain another
solution by slightly altering the current solution, we can in-
troduce a neighboring relation on the search space, i.e., x′
is a neighbor of x if x′ can be obtained from x by apply-
ing one of the modifications considered by the heuristic. We
use x � x′ to denote such a neighboring relation. Based
on this, we can further define the neighborhood of x as
N (x) = {x′|x � x′}. Alternatively, we can think of the

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

26

Algorithm 1 Basic Architecture for Combining Heuristics
Require: a set of heuristics H , a policy L for choosing lengths,

and a policy H for choosing heuristics.
1: x ← initial solution.
2: while stopping criteria not met do
3: � ← a length chosen according to L
4: x0 ← x
5: for i = 0 to (�− 1) do
6: hi+1 ← a heuristic chosen from H according to H.
7: xi+1 ← hi+1(xi)
8: if xi+1 is better than x then
9: break

10: end if
11: end for
12: if the best among x1,x2, ...,x� is better than x then
13: x ← the best among x1,x2, ...,x�

14: end if
15: end while

mapping N : S → 2S (where S is the solution space) as a
representation that encodes the set of modifications that the
heuristic considers, and we call such an N a neighborhood
function or a neighborhood structure.

Using the above concept, we can come up with a wide
range of heuristics based on different neighborhood func-
tions. And in addition to the neighborhood function, there
are two more criteria for specifying a neighborhood-based
heuristic: 1) the transition rule, and 2) the iterating condition
of the process. For example, we can define a simple local
search by making the following specification: The transition
rule is to switch to the best solution in the neighborhood (on
the premise that it is an improvement over the current solu-
tion.) And the iterating condition is to iterate until there is
no further improvement transitions possible.

Based on the above three criteria (i.e. the neighborhood
function, the transition rule, and the iterating condition), we
can specify a class of heuristics that we characterize as the
neighborhood-based heuristics. With this in mind, in the fol-
lowing, we briefly review Chuang and Smith’s framework
for combining multiple neighborhood-based heuristics.

1.2 Algorithmic Framework
As mentioned previously, the key attribute of neighborhood-
based heuristics, which enables us to think about combining
them, is that a neighborhood-based heuristic can pick up a
complete solution and modify it to generate a new solution.
Using this property, we can architect a procedure that chains
the operations of multiple heuristics in a pipelined fashion.
Chuang and Smith (2018) utilized this idea and outlined a
simple algorithmic framework. Basically, an algorithm de-
rived from this framework will operate by passing the work
of one heuristic to another in the form of a complete solu-
tion. This complete solution will be used by the receiving
heuristic for initializing its own operation. Thus, we can ac-
cumulate the modifications from multiple heuristics and ex-
plore the search space more diversely.

The description of this framework is shown in Algo-
rithm 1. In this framework, we assume that we are given
a set of heuristics H , along with two user-defined compo-

x0 x1

h1

x2

h2

· · · · · ·
h3

x�

h�

Check if xi is better than incumbent solution x.
If it is, we terminate this chain at xi.

Figure 1: The inner loop of Algorithm 1. It starts with a solu-
tion x0. Each subsequent step consists of selecting a heuris-
tic hi+1 from the set of provided heuristics H and applying
hi+1 to the previous solution xi to get a new solution xi+1.
If xi+1 is better than the incumbent solution x, we terminate
this process and replace x with xi+1. Otherwise, we proceed
until reaching the bound �.

nents: 1) a policy L for choosing the chain length, and 2) a
policy H for choosing among the given heuristics. Following
that, each iteration begins with deciding a positive integer �
according to the policy L. This � will bound the length of the
next chain of heuristic applications. The algorithm then goes
on constructing a chain of solutions by applying a sequence
of heuristics (selected according to policy H) successively,
as illustrated in Figure 1. If any solution encountered during
this process is better than the incumbent solution x, we break
out of the inner loop and replace x with the better solution.
Otherwise, this process repeats.

Note that in most of the scenarios, we will have stochastic
heuristics included in H (for example, heuristics that pro-
vide random perturbations in order to escape local optima),
so even applying the same sequence of heuristics can poten-
tially yield different solutions. Furthermore, since those so-
lutions are generated stochastically, we can also think of the
process depicted in Figure 1 as sampling a solution chain.

Following (Chuang and Smith 2018), in this work, we
consider the situation that the set of heuristics H is prede-
fined and is given to us from some external source. Thus, we
can think of a problem domain as a combination of an op-
timization problem and a set of heuristics designed for that
problem. With this setting, we are left with two user-defined
components to specify to make Algorithm 1 functional: the
policy L for choosing the chain lengths and the policy H for
choosing the heuristics.

In their report, Chuang and Smith described a policy
for the L component. This policy uses Luby’s sequence
(Luby, Sinclair, and Zuckerman 1993) for deciding the chain
lengths. The idea is that we can pick � sequentially accord-
ing to the Luby’s sequence, and jump back to the beginning
of the Luby’s sequence every time we replace the incum-
bent solution with a new best solution. The benefit of us-
ing this policy is that it offers a theoretic guarantee that it is
asymptotically optimal in an agnostic scenario. In their ex-
periments, they also showed that using this policy for the L
component can yield a competitive result, even when cou-
pled with a simple H component that selects heuristics uni-
formly at random. In this work, we will build upon their re-
sults and discuss how to construct a good H component from
experience.

27

1.3 Hyper-heuristics
Conceptually, the above framework also relates to a research
field called hyper-heuristics (Chakhlevitch and Cowling
2008; Burke et al. 2010; 2013). The term “hyper-heuristics”
was first introduced as “heuristics to choose heuristics.”
However, this term was later also adopted by the genetic
programming community to similarly refer to methods that
assembles new search heuristics from a set of primitive op-
erations. For the purpose of this paper, we will only make
connections to the original conception of hyper-heuristics,
which architecturally follow a two-level structure: At the
lower level, there is a set of heuristics1, and the top level
corresponds to a mechanism that iteratively dispatches the
lower-level heuristics in order to improve the quality of the
current solution.

Operationally, most hyper-heuristics adhere to the follow-
ing procedure: Given an initial solution (either generated
randomly or heuristically), the hyper-heuristic goes through
the steps of (1) selecting a heuristic from the set of provided
heuristics, and (2) applying selected heuristic to the incum-
bent solution to generate a new solution, then finally (3) de-
ciding whether the new solution should be accepted as the
new incumbent solution. This process iterates until the ter-
mination conditions are met.

Note that the above description partially resembles the
framework that we listed as Algorithm 1. The key difference
is that in addition to having a component for selecting among
heuristics, Algorithm 1 also has a component for choosing
the length of the pipeline that chains the selected heuristics.
In this way, we explicitly express the idea that we are struc-
turing the exploration of the search space as a process that
constructs many solution chains.

Also note that most of the recent hyper-heuristics use
some sorts of learning mechanisms to boost their perfor-
mance. One way to make a classification is to distinguish
them by whether they use online learning or offline learn-
ing. An online learning hyper-heuristic adjusts itself based
on the feedback received during the search process and dy-
namically adjusts its behavior. Offline learning, in contrast,
takes place before the actual search starts. In this paper, we
discuss the issue of how to construct a good H component
for the framework that we described in the previous section.
And the specific approach that we look into can be seen as
an offline learning technique.

In the following section, we will first introduce a distri-
butional assumption under which we developed our tech-
niques. Based on this assumption, Section 3 will describe
our proposal for an automated policy construction proce-
dure. After that, in Section 4, we will show the results of the
experiments, followed by a discussion in Section 5. Finally,
Section 6 concludes this paper.

2 Distributional Assumption
In this work, we investigate the issue of how to design a pol-
icy for choosing among the given heuristics for application.
In the algorithmic template that we described in the previous

1In most cases, the set of heuristics are what we have character-
ized as the neighborhood-based heuristics.

section, this component was denoted as H. In their previous
work, Chuang and Smith (2018) experimented with a base-
line policy Hu, which simply selects a heuristic uniformly
randomly from the set of heuristics each time it is consulted.
In this work, we would like to study how to come up with
a better policy, and more importantly, how to automate its
construction.

However, in order to proceed, we need to define what it
means to be a better policy. Apparently, if we don’t limit
the scope of applicability, it can be challenging to give a
definition that is both reasonable and easy to work with. It
can be a daunting task to search for a “universally good”
policy because this definition amounts to enumerating “all
possible problem domains2,” which is itself abstract to begin
with. So instead, we will handle the construction of policies
in a per-domain fashion.

More importantly, we will proceed with a distributional
assumption that we are given a set of problem instances for
training, and the future problem instances will be from the
same distribution from which we drew the training set. To
elaborate more on this, we implicitly assume that the future
problem instances will have similar characteristics as those
in the training set. Hence, there is a reason to hope for the
possibility that a policy derived from the training set may
generalize well to the future instances.

To state more explicitly, we define our task as follows:
With a fixed set of heuristics, construct a dispatching policy
H based on a set of problem instances drawn from a tar-
get distribution D so that the algorithm using H will have a
good expected performance over the future instances drawn
from D. And with this notion of expected performance over
a target problem instance distribution, we can formally com-
pare two policies and make statistical statements about our
observations. Empirically, this setup also allows us to use
cross-validation to assess the effectiveness of our policy con-
struction procedure, which we will introduce in the follow-
ing section.

3 Automated Policy Construction
Our idea for an automated policy construction procedure is
that it will take the set of training problem instances and
perform the following operation: For each training problem
instance, it will attempt to solve it using the configuration
that employs Hu as heuristic selection policy and Luby’s
strategy as length selection policy (basically, the same base-
line algorithm that Chuang and Smith (2018) experimented
in their previous report.) During a run, if the solver created
a solution chain that led to an improving solution (i.e. a so-
lution that is better than the previous best solution), we will
record the corresponding sequence of heuristics that gener-
ated that solution chain. This process will give us a log of

2As mentioned previously, we define a problem domain as a
set of heuristics together with a mechanism to evaluate the qual-
ity of a solution. These objects are treated as black-boxes and we
assume no detailed knowledge was revealed about the inner work
of these objects. Note that with this definition, with a different set
of heuristics, we will have a different problem domain, even if the
underlying combinatorial optimization problem is in fact the same.

28

10
6
10
8
0 8
1 7
1 10 0 7
0 8
0 0 10 8
0 7
1 10
7
1 8
0 7

(a) A Sample Log of Sequences

10
6
10
8
[0 8]
1 7
[1 10] [0 7]
[0 8]
0 0 10 8
[0 7]
[1 10]
7
1 8
[0 7]

(b) Segmented Version

Pattern Probability
0 0.1
1 0.1
6 0.05
7 0.1
8 0.15
10 0.15

[0 8] 0.1
[1 10] 0.1
[0 7] 0.15

(c) A Probabilistic Model

Figure 2: On the left, we list a sample log of sequences. Each number number in this log maps to a heuristic from a problem
domain. In this place, the problem domain has 11 heuristics and they are indexed from 0 to 10. Each line of this log represents a
sequence of heuristics that had created an improving solution. In the middle, some of the common patterns are segmented out.
And on the right, we have a model estimated from the segmented sequences.

sequences. And because these sequences are the ones that
had led to improving solutions, we think it is possible to
construct a better policy through analyzing this log.

For example, suppose that by running the baseline algo-
rithm, we collected a small log like the one shown in the
Figure 2a, in which each number maps to a heuristic from a
problem domain. In this place, the problem domain has 11
heuristics and they are indexed from 0 to 10. Each line of this
log represents a sequence of heuristics that had created an
improving solution. By inspecting this log, we can observe
some interesting patterns that seem to occur more frequently
than others. Our hypothesis is that each of these patterns cor-
responds to an effective processing flow, and more impor-
tantly, it can be thought of as a “heuristic macro” represent-
ing a collaboration of the participating heuristics. If we can
segment them out, like what are shown in Figure 2b, then by
a simple counting, we can estimate a probabilistic model that
encodes these structures, such as the one shown in Figure 2c.
The idea is that by sampling this model instead of sampling
uniformly randomly like Hu, we will be able to reuse those
patterns and compose new sequences of heuristics with these
“heuristic macros” embedded as sequence components. This
can potentially improve the efficiency of the search3.

However, it is not immediately obvious how to come up
with such a segmentation without a manual intervention. As
mentioned above, our goal is a fully automated procedure
for constructing policies, so solving this issue is inevitable.
Our idea to proceed is to recognize that if someone handed
us a probabilistic model, then we will be able to divide a se-

3Also note that although there were 11 heuristics, not all of
them are included in the model. This is because some of the heuris-
tics were never part of any sequences that had led to an improving
solution and hence, being left out of the model. This can be seen as
a way to prune the ineffective heuristics, an idea that Chuang and
Smith (2018) also experimented in their previous report.

quence into its most probable segmentation using a dynamic
programming. On the other hand, once we have such a seg-
mentation for every sequence in the log, we can estimate a
probabilistic model by a simple counting. These two steps
seem to form an Expectation-Maximization (EM) loop. So
we think it is possible to iteratively build a model based on
an EM procedure.

The dynamic programming procedure for segmenting the
sequences is listed in Algorithm 2. It will take as input a
model M of the same form as the one shown in Figure 2c
and divide the given sequence s = s0s2 . . . sn−1 into parts
so that the resulting parts in combination has the highest
probability according to M. Note that in Algorithm 2, we
index the elements of a sequence starting from 0 instead of
1, and and we use M[·] to denote a query to the probability
table of the model M. For example, M[0 8] will yield 0.1
by the model shown in Figure 2c.

To briefly explain the core idea of this algorithm, note
that for a partial sequence s0s1 · · · sj , if we consider a tail
part sisi+1 · · · sj as a unit, then the optimal probability of
the model M generating the partial sequence s0s1 · · · sj
(with the tail part sisi+1 · · · sj as a unit) is the probabil-
ity of the most probable segmentation of s0s1 · · · si−1 times
M[sisi+1 · · · sj]. With this observation, we can recursively
define the optimal segmentation given a model and use a dy-
namic programming approach to solve for it.

Equipped with the above algorithm for segmenting se-
quences, we can now construct an EM procedure as fol-
lows: First, we initialize a model by collecting all the sub-
sequences appearing in the sequence log as patterns4, with
the premise that the number of appearances is higher than
certain threshold θ.5 Each pattern’s initial probability is set

4We can also set a bound on the length of the patterns for effi-
ciency purpose.

5Note that we do not impose this threshold restriction on sub-

29

Algorithm 2 Segmenting a Sequence Given a Model
Require: a model M for segmenting input sequence s.

1: n ← the length of sequence s
2: k ← the length of the longest pattern in model M
3: p ← an array of length n (for keeping probabilities)
4: b ← an array of length n (for keeping backpointers)
5: for j = 0 to n− 1 do
6: p[j] ← M[s0s1 · · · sj]
7: b[j] ← 0
8: for i = max(j − k + 1, 1) to j do
9: if M[sisi+1 · · · sj] �= 0 then

10: if p[j] < p[i− 1]×M[sisi+1 · · · sj] then
11: p[j] ← p[i− 1]×M[sisi+1 · · · sj]
12: b [j] ← i
13: end if
14: end if
15: end for
16: end for
17: d ← a stack (for recording the segments of s)
18: j ← n− 1
19: while j ≥ 0 do
20: i ← b [j]
21: Push sisi+1 · · · sj as a unit to d
22: j = i− 1
23: end while
24: return d

to be proportional to the number of appearances in the log.
With this initial model, we then run Algorithm 2 to obtain
a segmentation for each sequence in the log. Based on the
segmented version of the log, we re-estimate a model by
counting the frequency of each pattern. Finally, we proceed
to the next iteration by performing a segmentation using the
new model. This process iterates until we get a re-estimated
model that is identical to the old one.

4 Experiments and Results
This section describes the implementation details and the re-
sults of an experimental analysis of our policy construction
algorithm. We will first provide a brief review on HyFlex, a
software framework upon which we built our programs. We
then describe the implementation details of our approach.
Following that, we will show the results of the experiments
and compare the proposed approach to two alternatives.

4.1 HyFlex and Its Extensions
HyFlex is a software framework that was developed to fa-
cilitate the research of hyper-heuristics (Ochoa et al. 2012).
The benefit of using HyFlex is that it offers a common inter-
face for dealing with different combinatorial optimization
problems. This interface encapsulates problem specific de-
tails, such as solution representations and how each heuris-
tic actually works, from the user of the framework. Thus, it

sequences of length 1. Otherwise, it may result in an error when we
apply the initial model to the task of segmenting sequences, i.e., the
situation that the model doesn’t contain a heuristic that appears in
the sequence.

provides a convenient platform on which we can experiment
with our ideas.

The initial HyFlex software package has four problem do-
mains built into it: maximum satisfiability, one-dimensional
bin packing, permutation flow shop and personnel schedul-
ing. Each of these problem domains has an implementation
of a set of problem specific heuristics ready to be called from
a unified interface. Note that HyFlex also offers a parametric
control over some tunable aspects of the defined heuristics.
However, for simplicity, we will only use the default param-
eters and will not perform any further tuning on them.

Since its initial release, HyFlex has being extended, e.g.,
(Walker et al. 2012; Adriaensen, Ochoa, and Nowé 2015). In
this work, we also use an extension (Adriaensen, Ochoa, and
Nowé 2015) that offers an implementation of the quadratic
assignment problem.

As mentioned in Section 2, our approach makes a distri-
butional assumption about the problem instances from a do-
main. However, the default collections of problem instances
in both the original HyFlex and Adriaensen et al.’s exten-
sion don’t seem to follow this assumption: For each domain,
they tend to put together problem instances that are char-
acteristically dissimilar to each other, which violates our
distributional assumption. To create our target setting, we
modified their code so that we can load problem instances
from sources that follow more closely to our distributional
assumption.

Specifically, we will test our approach with three problem
domains: permutation flow shop problem, 1-D bin packing
and quadratic assignment problem (they will be denoted as
FS, BP, and QAP, respectively.) The descriptions of these
problem domains and the implementation details of their ac-
companying heuristics can be found in (Hyde et al. 2009),
(Vázquez-Rodrıguez et al. 2009) and (Adriaensen, Ochoa,
and Nowé 2015). For each problem domain, we will run ex-
periments on multiple sets of problem instances where each
set follows a particular distribution. Table 1 shows the name
of each instance set and the source where we obtained them.

4.2 Implementation Details
Our implementation starts with an initial stage that collects
a log of sequences. For an instance set, we will run the base-
line algorithm6 from (Chuang and Smith 2018) on each of
the training problem instances for 31 times (with different
random seeds) to collect sequences of heuristics that lead to
improving solutions. In our experiments, each run lasts for 3
minutes on an Amazon Web Service’s EC2 c4.large virtual
machine. The collected sequences7 are then fed into a model
construction procedure to produce a probabilistic model that
will later be used as the policy for selecting heuristics.

In order to achieve a more accurate modeling, we further
adopt the following extension to the model construction pro-
cedure described in the previous section: We will split the se-
quence log into two collections. One collection contains the

6That is, an algorithm that uses Hu as the heuristic selection
policy and Luby’s strategy as the length selection policy.

7Note that this collection contains all the sequences from all
runs on all the training problem instances from the instance set.

30

Table 1: Problem Domains & Sets of Instances

Domain Instance Sets Source
FS 100x10, 100x20, 200x10, 200x20, 500x20 (Taillard 1993)
BP testdual4, testdual7, testdual8, testdual11 (Burke, Hyde, and Kendall 2010)

QAP tai45e, tai75e (Drezner, Hahn, and Taillard 2005)

singleton sequences, i.e., the sequences of length 1, and the
other contains all the other sequences, which are of length
2 or longer. We then build two separate models based on
these two collections. With this specialization, our policy for
choosing heuristics can now be conditioned on the length of
the heuristic chain. That is, when the length policy L sug-
gests that the next heuristic chain should be of length 1 (i.e.
� = 1), we will use the singleton model for choosing heuris-
tics. On the other hand, if � > 1, we will use the model built
on sequences of length 2 or more to select among heuristics
and heuristic macros.

Note that there is a parameter θ that needs to be set for
the model construction procedure. It specifies the minimal
number of appearances in the log in order for a sub-sequence
to be considered as a pattern in the initial model. In order to
account for the variations of the number of sequences in the
log (denoted as N), we use the following formula,

θ = max(3, N × ρ)

where we use ρ = 0.02 for FS and QAP, and 0.05 for BP.
Once we have constructed a model, we will then use it as

the policy for choosing heuristics (i.e. the H component) and
plug it into Algorithm 1. As for the length policy (i.e. the L
component), we will continue to use the Luby’s sequence in
the following experiments.

4.3 Empirical Results
With our distributional assumption, we conducted our ex-
periments on each instance set separately, and the problem
instances were used in a leave-one-out fashion, e.g., if we
want to assess the performance of the proposed method on
the first problem instance, we will use the second to the tenth
instance (assuming there are ten instances) as the training
problem instances. For each training problem instance, we
performed 31 runs of the baseline algorithm from (Chuang
and Smith 2018), each run lasted for 3 minutes on an Ama-
zon Web Service’s EC2 c4.large virtual machine, to collect
sequences.

With a collection of sequences, we then built a policy H
by performing the aforementioned policy construction pro-
cedure. With the resulting policy H, along side with Luby’s
strategy as the L component, we constructed an algorithm
out of the template of Algorithm 1. The resulting algorithm
was then tested for 31 runs, each run lasted for 30 seconds.
Note that the discrepancy between the amount of time allo-
cated for the training runs and the amount of time allocated
for the testing runs is because 1) we would like to collect
a sufficient number of sequences, and 2) we would like to
obtain patterns that may only show up in the later stage of a
run. Most importantly, our objective for these experiments is
to see if the proposed approach offers any speed-up over the

baseline approach, i.e., whether the algorithm with a learned
policy can find a solution with a better quality than the solu-
tion found by the baseline algorithm using the same amount
of running time.

As a further comparison, we also tested a configuration
that uses “plain” models. This kind of model only consid-
ers individual heuristics and does not extend to patterns of
length 2 or more. Basically, it is just a frequency estimate
on each of the individual heuristics based on the sequence
log. Note that for this configuration, we also used the single-
ton sequence specialization mentioned previously, so that we
can compare meaningfully on whether there is an advantage
from building a more elaborated model.

To provide a fair comparison, we also accounted for the
effect of the initial solution by synchronizing the three ap-
proaches to start with the same initial solution. That is, for
the i-th run of all three approaches, they use the same ini-
tial solution so that no one will have an advantage over the
others by starting with a better solution. This setting also al-
lows us to use paired t-test and Wilcoxon signed-rank test to
statistically evaluate the results.

The results of the experiments on the FS instance sets are
shown in Table 2. For each target problem instance, we com-
pare the results of the proposed approach, denoted as Macro,
to the results of Chuang and Smith’s baseline, and to the
configuration that uses plain models. Each number listed in
these tables represents the Averaged Relatived Percentage
Deviation (ARPD) over 31 runs:

ARPD =
1

31

31∑

i=1

objvali − bestknown
bestknown

× 100

where objvali is the final objective value obtained from run i,
and bestknown represents the objective value of the current
best-known solution.

In order to have a sound analysis, we also performed sta-
tistical tests to see if there is a significant difference between
the results of different methods. The statistical tests are ar-
ranged as follows: If the pairwise differences between the
results of two approaches are distributed normally (as cer-
tified by a normality test with p-value > 0.1), then we use
a paired t-test. Otherwise, we use the Wilcoxon signed-rank
test. The results of the tests are also shown in the tables: we
use a + symbol to denote that the result is significantly dif-
ferent (as determined by a p-value < 0.1) from the result
of the baseline, and a ∗ symbol to represent that there is a
significant difference (also thresholded by p-value < 0.1)
between the result of the proposed approach and the result
of the approach that uses plain models.

As shown in Table 2, for the FS domain, the proposed
approach seems to have an advantage over the baseline
method, as supported by the generally better ARPD values.

31

Table 2: Results on Taillard’s FS Instance Sets

(a) 100x10

Instance Baseline Plain Macro
01 0.175546 0.136412+ 0.151506
02 0.255700 0.227356+ 0.227356+

03 0.052854 0.052854 0.051149
04 0.816914 0.748280+ 0.715916+

05 0.595951 0.578250 0.519835+

06 0.100369 0.103411 0.094286
07 0.137219 0.090519+ 0.088212+

08 0.552470 0.521458 0.483555
09 0.342306 0.244504+ 0.248350+

10 0.081680 0.056293 0.059604

(b) 100x20

Instance Baseline Plain Macro
01 2.518959 2.313510+ 2.193361+

02 2.077496 1.880807+ 1.700813+∗

03 1.798859 1.584868+ 1.547831+

04 1.676452 1.610073 1.513850+∗

05 2.118181 1.932214+ 1.749824+∗

06 2.109649 2.013341+ 1.976339+

07 2.011755 1.980876 1.768327+∗

08 2.464333 2.269303+ 2.173048+

09 2.172472 2.009510+ 1.857345+∗

10 1.772840 1.624435+ 1.545218+

(c) 200x10

Instance Baseline Plain Macro
01 0.192443 0.161557+ 0.146114+

02 0.536814 0.428466+ 0.403534+

03 0.442729 0.336994+ 0.198770+∗

04 0.039696 0.034364 0.035549
05 0.131803 0.123527 0.120462
06 0.362275 0.262337+ 0.202999+

07 0.329891 0.244595+ 0.234193+

08 0.398942 0.249526+ 0.198719+∗

09 0.250326 0.226220 0.199024+

10 0.365037 0.316084 0.252323+

(d) 200x20

Instance Baseline Plain Macro
01 1.964587 1.732052+ 1.679033+

02 2.517759 2.220027+ 2.143435+

03 2.456314 2.197243+ 2.143484+

04 2.174379 1.959230+ 1.883413+

05 1.650006 1.395013+ 1.273533+∗

06 2.181518 1.955804+ 1.848142+∗

07 1.832974 1.575704+ 1.524023+

08 2.117523 1.852263+ 1.656164+∗

09 2.391685 2.177823+ 2.133725+

10 2.327908 1.932683+ 1.995268+

(e) 500x20

Instance Baseline Plain Macro
01 1.546738 1.316615+ 1.262767+

02 1.577993 1.350654+ 1.275848+∗

03 1.439142 1.304096+ 1.232292+∗

04 1.212116 1.068116+ 0.976545+∗

05 1.120960 0.953753+ 0.862126+∗

06 1.225531 1.027550+ 0.900477+∗

07 0.996627 0.832581+ 0.793341+

08 1.402910 1.204819+ 1.103648+∗

09 1.447488 1.245790+ 1.169378+∗

10 1.102093 0.930908+ 0.892013+

Furthermore, the significance of this advantage seems to in-
crease as the problem becomes larger (i.e., increasing the
number of jobs) or harder (i.e., increasing the number of
machines from 10 to 20.) As for the comparison between the
proposed approach and the approach that uses plain models,
we can observe a similar trend: the advantage also seems to
increase as the problem becomes larger or harder. Further-
more, although the plain approach sometimes gives a better
ARPD, the differences are not statistically significant.

The results of the experiments on the QAP domain are
shown in Table 3. These results are also represented in
ARPDs. In the QAP domain, we also observe the same phe-
nomenon as in the FS domain: overall, the proposed ap-
proach usually gives a better result. Furthermore, for the
larger problem instances (i.e., instances in tai75e) the dif-
ferences between the proposed approach and the plain ap-
proach are generally significant.

Table 4 shows the results of the experiments on the BP do-
main. In this place, problem instances from all four instance
sets are of the same sizes: they are all one-dimensional bin
packing problems containing 500 pieces. The difference lies
in how the sizes of the pieces are distributed. As described in
(Burke, Hyde, and Kendall 2010), these instance sets were
created by drawing pieces from different pairs of Gaussian
distributions. Note that for this domain, the results are shown
in objective values instead of ARPDs because we cannot find
a published source of best-known values.

As shown in the tables, both the plain approach and the
proposed approach are better than the baseline approach
with statistical significance. Comparing the proposed ap-
proach with the plain approach, we can see that for most

Table 3: Results on Taillard’s QAP Instance Sets

(a) tai45e

Instance Baseline Plain Macro
01 5.984746 2.152215+ 1.568631+

02 7.928935 4.937160+ 4.789766+

03 6.414315 2.647260+ 1.449401+

04 5.754245 4.290159 4.562749
05 3.781032 2.235093+ 1.513122+

06 3.814179 2.779892 2.564253
07 5.798393 2.476576+ 1.651908+

08 5.807830 4.365716 3.557542+

09 6.214821 4.796009 2.096192+∗

10 4.259030 3.583970 0.910981+∗

(b) tai75e

Instance Baseline Plain Macro
01 19.041342 16.238578+ 12.578151+∗

02 19.721550 19.836789 13.911793+∗

03 17.149603 16.152279 11.497947+∗

04 16.066372 14.313309 10.116981+∗

05 20.014321 15.954773+ 12.920251+∗

06 21.050871 19.556098 11.310140+∗

07 18.675130 14.813618+ 11.363583+∗

08 21.185602 18.548156+ 14.333423+∗

09 16.415657 13.739131+ 10.255259+∗

10 16.646816 12.334527+ 10.240208+∗

of the problem instances, the proposed approach offered sta-
tistically better results. However, for the testdual8 instance

32

set, the significance seems to drop. We suspect that it was
because the problem instances from this instance set are rel-
atively easier to optimize because the pieces are drawn from
a pair of Gaussian distributions that have means and stan-
dard deviations of (50, 10) and (35, 5). This makes the over-
all distribution of the 500 pieces look more unimodal than
that of the problem instances from the other instance sets.

5 Discussion
In this paper, we are mainly interested in whether a learned
H policy offers any speed-up over baseline methods, and
furthermore, whether extending to chunks of heuristics (i.e.,
what we called heuristic macros) offers any advantages.
Note that the aim of our experiments was not to solve the
combinatorial optimization problems to their state-of-the-art
objective values, but rather simply to test whether the pro-
posed learning method can be effective in the proposed set-
ting. However, we would like to point out that by adding the
state-of-the-art neighborhood-based heuristics into the algo-
rithm (i.e., adding them into the set of heuristics H), we can
incorporate their power as well to further boost the results.

Although the scenario that we considered in this paper
(i.e, explicit distributional assumption and learning from a
log of sequences) has had little discussion in the previous
hyper-heuristic research, here we would like to offer an indi-
rect connection. Note that Chuang and Smith (2018) exper-
imented with a pruning strategy that eliminates a heuristic
from further applications if after a period of time of running
the algorithm, we never had observed that heuristic in any
chain that had led to an improving solution. It was shown
that by using this strategy, we can obtain a competitive re-
sult against most of the earlier hyper-heuristics. To relate to
this pruning strategy, note that the “plain” model that we in-
troduced in the experimental section can be seen as its gen-
eralization, and we speculate that they will offer comparable
performance under the same settings.

6 Conclusions
In this paper, we developed a technique that allows us to au-
tomate the task of building the policies for choosing heuris-
tics. This technique distills potentially useful patterns of in-
teractions among heuristics, which are represented as a set of
heuristic macros (i.e. concatenations of several heuristics),
and it will also give an estimate for the frequency of using
each heuristic macro. The empirical results on three problem
domains have shown that the proposed approach is effective
and has an advantage over the baseline methods.

References
Adriaensen, S.; Ochoa, G.; and Nowé, A. 2015. A bench-
mark set extension and comparative study for the HyFlex
framework. In Evolutionary Computation (CEC), 2015
IEEE Congress on, 784–791. IEEE.
Burke, E. K.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan,
E.; and Woodward, J. R. 2010. A classification of hyper-
heuristic approaches. In Gendreau, M., and Potvin, J.-Y.,
eds., Handbook of Metaheuristics. Boston, MA: Springer
US. 449–468.

Table 4: Results on Burke et al.’s BP Instance Sets

(a) testdual4

Instance Baseline Plain Macro
00 0.089207 0.069133+ 0.068139+∗

01 0.091488 0.070113+ 0.069213+∗

02 0.093708 0.072988+ 0.071486+∗

03 0.090633 0.070524+ 0.069611+∗

04 0.089375 0.069370+ 0.068516+∗

05 0.092950 0.072249+ 0.071397+∗

06 0.094640 0.072804+ 0.071660+∗

07 0.097589 0.077429+ 0.076264+∗

08 0.090515 0.071128+ 0.070128+∗

09 0.089263 0.069609+ 0.068092+∗

(b) testdual7

Instance Baseline Plain Macro
00 0.028948 0.022164+ 0.020675+∗

01 0.028869 0.022314+ 0.020459+∗

02 0.029878 0.022866+ 0.021361+∗

03 0.029103 0.021700+ 0.020662+∗

04 0.029866 0.022316+ 0.021595+

05 0.030726 0.023608+ 0.021421+∗

06 0.029945 0.022211+ 0.021128+∗

07 0.032096 0.024515+ 0.022694+∗

08 0.030181 0.022947+ 0.021105+∗

09 0.030498 0.024017+ 0.022329+∗

(c) testdual8

Instance Baseline Plain Macro
00 0.097940 0.073250+ 0.072815+

01 0.095974 0.072190+ 0.070945+∗

02 0.096373 0.073214+ 0.072088+∗

03 0.094882 0.070756+ 0.070599+

04 0.094714 0.069339+ 0.069100+

05 0.099978 0.073889+ 0.073201+

06 0.094166 0.070222+ 0.069058+∗

07 0.093902 0.071990+ 0.070911+∗

08 0.095113 0.068894+ 0.068639+

09 0.097508 0.071883+ 0.071384+

(d) testdual11

Instance Baseline Plain Macro
00 0.036997 0.030537+ 0.027129+∗

01 0.034632 0.027890+ 0.025346+∗

02 0.035710 0.028108+ 0.025693+∗

03 0.035079 0.028418+ 0.025837+∗

04 0.036217 0.028120+ 0.027041+∗

05 0.035668 0.027843+ 0.025871+∗

06 0.036229 0.028726+ 0.025967+∗

07 0.037245 0.028298+ 0.027081+∗

08 0.034261 0.027077+ 0.024494+∗

09 0.035490 0.028428+ 0.026406+∗

Burke, E. K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa,
G.; Ozcan, E.; and Qu, R. 2013. Hyper-heuristics: A sur-
vey of the state of the art. the Journal of the Operational
Research Society 64.
Burke, E. K.; Hyde, M. R.; and Kendall, G. 2010. Providing

33

a memory mechanism to enhance the evolutionary design of
heuristics. In Evolutionary Computation (CEC), 2010 IEEE
Congress on, 1–8. IEEE.
Chakhlevitch, K., and Cowling, P. 2008. Hyperheuris-
tics: Recent developments. In Cotta, C.; Sevaux, M.; and
Sörensen, K., eds., Adaptive and Multilevel Metaheuristics.
Berlin, Heidelberg: Springer Berlin Heidelberg. 3–29.
Chuang, C.-Y., and Smith, S. F. 2018. Combining neigh-
borhood-based heuristics: A framework and pilot study on
baselines. Technical Report CMU-RI-TR-19-04, Carnegie
Mellon University.
Drezner, Z.; Hahn, P. M.; and Taillard, É. D. 2005. Recent
advances for the quadratic assignment problem with special
emphasis on instances that are difficult for meta-heuristic
methods. Annals of Operations research 139(1):65–94.
Hansen, P.; Mladenović, N.; Brimberg, J.; and Pérez, J.
A. M. 2019. Variable neighborhood search. In Handbook of
metaheuristics. Springer. 57–97.
Hyde, M.; Ochoa, G.; Curtois, T.; and Vázquez-Rodrı́guez,
J. 2009. A HyFlex module for the one dimensional bin-
packing problem. Technical report, School of Computer Sci-
ence, University of Nottingham.
Lourenço, H. R.; Martin, O. C.; and Stützle, T. 2010. Iterated
local search: Framework and applications. In Handbook of
metaheuristics. Springer. 363–397.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms. In Theory and Computing
Systems, 1993., Proceedings of the 2nd Israel Symposium on
the, 128–133. IEEE.
Nowicki, E., and Smutnicki, C. 2005. An advanced tabu
search algorithm for the job shop problem. Journal of
Scheduling 8(2):145–159.
Ochoa, G.; Hyde, M.; Curtois, T.; Vazquez-Rodriguez, J. A.;
Walker, J.; Gendreau, M.; Kendall, G.; McCollum, B.;
Parkes, A. J.; Petrovic, S.; and Burke, E. K. 2012. HyFlex: A
benchmark framework for cross-domain heuristic search. In
Evolutionary Computation in Combinatorial Optimization:
12th European Conference, EvoCOP 2012. Berlin, Heidel-
berg: Springer Berlin Heidelberg. 136–147.
Taillard, E. 1993. Benchmarks for basic scheduling
problems. European Journal of Operational Research
64(2):278–285.
Vázquez-Rodrıguez, J. A.; Ochoa, G.; Curtois, T.; and Hyde,
M. 2009. A HyFlex module for the permutation flow shop
problem. Technical report, School of Computer Science,
University of Nottingham.
Walker, J. D.; Ochoa, G.; Gendreau, M.; and Burke, E. K.
2012. Vehicle routing and adaptive iterated local search
within the HyFlex hyper-heuristic framework. In Learning
and Intelligent Optimization. Springer. 265–276.

34

