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Abstract

We are interested in the problem of providing intuitive in-
structions for human agents to enable reliable navigation in
unknown environments. Since the advent of GPS and digital
maps, a common approach is to visually provide a planned
path on a digital map defined in terms of actions to take
at specific junctions. However, this approach relies on the
agent to constantly and accurately localize itself. Further-
more, it comes in stark contrast to the way humans provide
instructions—by leveraging known landmarks in the environ-
ment to both augment the description of the planned path as
well as to allow to detect when the agent deviated from the
planned path. Hence, there is need for assurable means of
localization, an intuitive way of compactly conveying direc-
tions to agents and a systematic approach to account for hu-
man errors. To this end, our key insight is to employ known
landmarks in the environment to overcome these challenges.
We formally model this intuitive way to use landmarks for
conveying instructions and for creating contingency plans.
We present experiments demonstrating the efficacy of our
approach both on synthetic environments as well as on real-
world maps, computed using a smart-phone iOS application
that we developed.

1 Introduction

We consider the problem of a human agent navigating in
an unfamiliar environment from a given start to target loca-
tion. Specifically, we are interested in the case where we are
given a map of the environment and we want to account for
human-navigation errors. One approach, enabled by tech-
nological advancements such as portable hand-held digital
maps and Global Positioning System (GPS), is to follow a
pre-computed path using navigation services (see, e.g., (I0S
Maps contributors 2017; Google Maps contributors 2017)).
These services both plan a shortest path (given some opti-
mization criteria) as well as interactively show the agent’s
location on the map. However, these services require either
that (i) the GPS-data is both accurate as well as updated in
real-time and the agent constantly monitors its position or
that (ii) the agent is able to accurately interpret and con-
stantly localize itself on the map. When these conditions do
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not hold the agent may take wrong actions such as missing
a turn or taking a turn at the wrong location. Hence, there is
need for assurable means of localization, an intuitive way of
compactly conveying directions to agents and a systematic
approach to account for human errors. To this end, our key
insight is to employ known landmarks in the environment to
overcome these challenges.

Landmarks are features in the environment that are eas-
ily seen or recognized. They are commonly used in our ev-
eryday life both for localization and to provide directions,
acting as triggers dictating when an agent should perform
specific actions. For example, a common instruction given
by humans may be in the form (see also Fig. 1)

... continue straight until landmark ¢, (a gas station
for example) and then turn right at the junction until
the destination is reached. If you reached landmark ¢,
(a pizza store for example), you missed the turn and
should immediately turn right at the following junction
and then continue until the destination is reached.”

Our main contribution is formally modeling this intuitive
way to use landmarks for conveying instructions and for cre-
ating contingency plans.

After briefly describing the related work in Sec. 2, we start
modeling our problem in Sec. 3 by considering the simple
case when the agent always detects landmarks and there is
no need to create contingency plans. In this case, the prob-
lem can be cast as a graph-planning problem which we refer
to as landmark-based routing, or LBR. Computing minimal-
cost paths (to be formally defined in Sec. 3) for LBR corre-
sponds to computing shortest path on a graph.

We then continue in Sec. 4 to consider the event that land-
marks may be missed and how to generate plans that are
robust to such events. Roughly speaking, these are no longer
plans but policies. Since we wish to account for every land-
mark that could be missed, computation of such policies is
intractable as the number of landmarks increases. Moreover,
this is not how people convey directions which would hin-
der the applicability of the proposed model. People typi-
cally give directions for how to detect a missed landmark
or make sure that a following landmark will not be missed
but they do not specify a full policy. Thus, we introduce
the additional assumptions that the agent cannot miss two
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Figure 1: Landmark-based routing with safety nets. The
solid blue path is the planned path to the goal from the start
state. The dashed orange path is a safety-net plan that the
agent would follow if landmark ¢y was missed.

consecutive landmarks and that it can miss at most n land-
marks in total (for some given n). We call this problem LBR
with safety nets of degree n. These assumptions allow us to
cast the problem as a stochastic shortest-path problem while
leveraging landmarks in the environment to guide the agent.
To efficiently solve this problem, we use
PPCP (Likhachev and Stentz 2009). PPCP was shown to
outperform alternative algorithms but requires that specific
assumptions on the problem hold. While our model does
not directly satisfy these assumptions (Sec. 5) we exper-
imentally show in Sec. 6 that PPCP produces solutions
much faster than its counterparts without compromising
much on the solution quality. In our evaluation, presented
in Sec. 6, we solve the problem of planning with safety
nets for both synthetic as well as for real environments
using a smart-phone iOS application that we developed.
We demonstrate the type of paths produced as well as the
favorable traits of PPCP when compared to alternative
approaches. We conclude in Sec. 7 with a discussion on the
limitations of our models and directions for future work.

2 Related work
2.1 Landmarks in human-agent interfaces

Since the advent of GPS and digital maps, there has been
growing interest in using landmarks to augment inter-
faces for planning and for providing instructions to human
agents (Beeharee and Steed 2006; Hile et al. 2008; 2009;
Wither et al. 2013).

The aforementioned papers consider augmenting land-
mark images to improve the spatial understanding of the
route followed by the user. However, all of these approaches
use landmarks as a post-processing step to the already-
computed routes. Furthermore, there is no clear structure on
how and when to add landmarks to the routes nor do they
address the problem of uncertainty in landmark detection.

2.2 Robot planning using landmarks

Over the last two decades, there has been extensive work
on planning with landmarks, particularly in the context of
landmark-based robot navigation. Early work can be traced
to Latombe et al. (Lazanas and Latombe 1995a; Latombe
1990; Lazanas and Latombe 1995b) who considered the
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Figure 2: Partial depiction of Gy for the map depicted in
Fig. 1. The minimal-cost path is depicted in blue.

problem of planning under uncertainty where landmarks are
considered as zones with perfect localization. Outdoor vehi-
cle navigation is another domain in which landmarks have
been used to aid in the localization of the navigating vehi-
cles (Hait, Siméon, and Taix 1999; Fraichard and Mermond
1998; Gonzalez and Stentz 2007). Landmark-based naviga-
tion has also been used in the context of multiple agents
traversing unknown environment (Busquets, Sierra, and de
Mantaras 2003). Finally, there has been some recent work
on learning landmark representations and using them to vi-
sually aid robot navigation in unknown environments (Gupta
etal. 2017).

2.3 Planning for MDPs

Our problem of landmark-based routing with Safety Nets of
degree n falls under the specific category of planning with
sensing which, in our formulation, is a Markov Decision
Process (MDP)!. There have been multiple algorithm pro-
posed to solve MDPs such as RTDP (Bonet 1998), which
computes optimal policies using dynamic programming in
the belief MDP representation. As we show in our experi-
ments (Sec. 6), in our domain RTDP fails to scale well in
large environments because of its need to perform an update
step on every single state in the state space. LAO* (Hansen
and Zilberstein 2001) is another algorithm that can be used
for planning on MDPs. Although it leverages advantages of
heuristic search to a certain extent, this approach still is bot-
tlenecked by a dynamic-programming step and in our do-
main proves (empirically) to be too slow. The approach we
adopt in our work is PPCP, a heuristic-search algorithm
which was shown to perform better, in terms of scalabil-
ity and computation time, the alternative algorithms men-
tioned (Likhachev and Stentz 2009).

Our work is closely related to offline contingent plan-
ning (Domshlak 2013) where an agent is allowed to mis-
interpret a finite number of actions. Similarly, it bears re-
semblance to fully observable non-deterministic (FOND)
planning (Muise, Mcllraith, and Beck 2012; Muise, Belle,
and Mcllraith 2014) for finding goal-oriented plans. This
work was recently extended to the setting of maximizing
an agent’s probability of reaching a goal while preserving
guarantees on the computed plans (Camacho et al. 2015).

'Tn its general form, planning with sensing is a Partially Ob-
servable Markov Decision Process (POMDP). It certain cases, in-
cluding ours, it can be modeled as an MDP (see assumptions in
Sec. 4).



3 Landmark-based Routing (LBR)

In this section, we formulate and solve the problem of
landmark-based routing under the assumption that there is
no uncertainty in landmark detection. This can be seen as a
warm-up for Sec. 4 where we generalize this framework to
handle the case of uncertainty in landmark detection.

Informally, given a roadmap and a set of landmarks, the
objective of landmark-based routing (LBR) is to generate
plans specified in terms of actions to be taken when specified
landmarks are observed. This can be done while optimizing
for a variety of criteria such as length of the path, number of
turns on the path, number of landmarks used on the path etc.

We start by formally defining the notions of a roadmap
and landmarks (Sec. 3.1). We then describe how these are
used to define actions (Sec. 3.2) and then describe how
these are used to formulate and solve the problem of LBR
(Sec. 3.3).

3.1 Road networks and landmarks

Given a map of the environment, a road network Gy =
(W, En) is a planar directed graph generated using this
map. Here, each vertex v € Vy is associated with the loca-
tion of a junction on the map and each edge e = (u,v) € Ex
corresponds to a road connecting two junctions. We assume
that there is a function Wy : Vi x VN — R defining a cost
of reaching one vertex from another in the road network.

A set of landmarks L = {l;,...,l;} in the environ-
ment corresponds to k distinct locations in the map. We
assume that each landmark [ € L is associated with a
finite number of edges, each corresponding to a road
from which the landmark can be seen. Namely, there
exists some mapping M : L — 2PN For instance, for
the road network example introduced in Fig. 1, M (¢y) =
{Gos 1), (1s o), (o, J2), (G2, Jo)s (G2, Js), (Js, j2)}. Fi-
nally, we assume that the cost function Wy can be
extended to take landmarks into account. Namely, that
Wi : (VNUL) X (VNUL) — R.

3.2 Junction actions and landmark actions

Landmark-based routing, or LBR is a method for specifying
directions, or routes, in terms of actions to be taken when
designated landmarks are observed. This allows to generate
intuitive-to-follow directions for human agents. These direc-
tions, which are constructed of an alternating sequence of
landmarks and junction actions, alleviate the burden of pro-
viding (and receiving) instructions in terms of every road
and junction passed along the route. We start by defining
the notion of a junction action which is a method to specify
which outgoing road to take when approaching a junction
from an incoming road. We then continue to define the no-
tion of a junction-action sequence which, in turn, will be
used to define landmark actions.

Junction actions A junction action A; : (W, Ex) — En
specifies which outgoing road to take when approaching a
junction from an incoming road. Let v € Vy be a junc-
tion and let ey, eoy € En be incoming and outgoing edges
from v, respectively. In this work we consider two specific
types of junction actions A" and ATom X,

. Straight . .
The first action A" is used to specify a “natural” suc-

cessor (e.g., “stay on the road”) of an incoming edge to a
junction. Namely, A?tralght(v, €in) = €out if €y is the “natu-
ral” route an agent would take when approaching v from ej,.
We assume that this function is well defined for any v € Vy.2

The second action AT*™X is used to specify an action
that involves taking an outgoing edge that is not represented
by Ajsmugh‘. For example, A;”r”’znd'R‘ghl(v, €in) = €out if Eou
is reached by taking the second right-hand turn at junction v
when coming from e;y,.

Landmark vertices To uniquely define the location of the
agent with respect to a given landmark, we will define the
notion of a landmark vertex which is a pair (, e) such that
l € Land e € M(l). Namely, (,e) represents a state in
which landmark [ is observed by the agent while on the road
segment e. Let Vi = {(l,e)|l € Land e € M(l)} be the set
of all landmark vertices. Landmark vertices, together with
junction actions, will be used to define landmark actions—
the method we use to convey instructions to the agent.

Landmark actions A landmark action is a method of con-
veying a route between two landmark vertices. It is defined
as the act of executing junction actions at every junction en-
countered on the path until the designated landmark is ob-
served.

A junction-action sequence S = { A%, A% ...} is a pre-
defined (infinite) sequence of junction actions. Let S denote
the set of all junction-action sequences considered.

Given some landmark vertex vo = (I, €p), a junction-
action sequence S € S induces a sequence of landmark
vertices V(vg, S) = {v1,v2,...} where v; = (I;,¢e;) is
the 2’th landmark that will be visited when executing the
junction-action sequence S on the road network Gy. Note
that V' (vp,.S) could (i) be a finite sequence and (ii) consist
of repeated landmark states.

Here after, we only consider a few special sequences in &
to keep the instructions provided to the agent simple and
intuitive. Specifically, we consider the following junction-
action sequences:

Straight Straight
{A7TE AT Namely, the agent ex-
. . . Straight
ecutes the junction action A7 "

countered.

: ; igh igh

o STumX . [ ATum-X gSuaight  4SUaieht " % Namely, the
agent executes the junction action AT"™X at the first junc-
Straight

A;

° SStraight =

at every junction en-

tion followed by
encountered.

at the remainder of the junctions

Given some landmark vertex vy = (lp,eq) and a
junction-action sequence S € S, a landmark action Ay, :
(S,V5,L) — V, is a mapping instructing the agent to ex-
ecute the junction-action sequence S from its current posi-
tion vy € V7, until some landmark I’ € L is reached. Note
that a landmark action is only defined if there exists some

YIn certain junctions, such as T-junctions, the notion of
“straight” is not well defined. However, we assume that the ambi-
guity with regards to a “natural” action is solved by, say, assuming
that this is always a right-hand turn.



edge ¢/ € M(I') such that (I, ¢’) € V(vp, S). In such cases
we have that Ay, (S, vg,0") = (I, €').

3.3 LBR problem formulation

We are now ready to describe our formulation of LBR.
Given the list of landmarks L and the directed road-
network GV, the problem of LBR can be cast as a shortest-
path problem on a new graph Gy, = (11, E1.) which we call
a landmark graph.

The vertices V1. of GG are the set of all landmark vertices.
Namely,

W={(e)|l e Landec M(l)}.

An edge exists in G, between two landmark vertices vy =
(Lo, eq) and v1 = (¢1,e;) if there exists some junction-
action sequence S and some landmark action Ay, such that
AL(S, (Lo, e0),01) = (£1,e1). In other words, road seg-
ment e, from which [/ can be seen, will be reached by ex-
ecuting the sequence S of junction-actions. The cost of this
edge is the sum of costs in Gy of the edges traversed when
following the landmark action Ay, (S, (4o, ep), ¢1)-

Thus, given the start vertex vy € Vi, goal state v, € Vi
and the landmark graph G, LBR with no uncertainty in
landmark detection corresponds to computing the shortest
path in G'.. This problem can be solved using any search al-
gorithm such as A* (Hart, Nilsson, and Raphael 1968). See
Fig. 2.

4 LBR with safety nets

In Sec. 3 we formulated the problem of LBR under the as-
sumption that every landmark is detected. In this section we
relax this assumption to allow for some uncertainty in land-
mark detection (following our running example, this corre-
sponds to the case where the agent misses the gas station).
This is done by introducing the notion of safety nets. The ob-
jective of LBR with safety nets is to compute a plan that min-
imizes the expected cost to the goal. To this end, we make
the following assumptions,

A1 Uncertainty is only in detecting landmarks (and not in de-
tecting junctions).

A2 The start state is fully known (i.e., no uncertainty), and
similarly, there is no uncertainty in detecting a goal state.

A3 The likelihood of detecting a landmark is independent of
whether the agent previously observed that landmark.

A4 The agent may miss at most n landmarks.

AS When executing any particular action (i.e., following a
single instruction in the plan), the agent may miss at most
one landmark (i.e., it won’t miss two consecutive land-
marks).

In assumption A4, n, referred to as the safety net degree,
is a user-defined parameter. After missing n landmarks, the
agent is assumed to detect all landmarks remaining in the
plan. Not only does this assumption make plans look more
intuitive to human agents, but it also makes planning more
scalable as we show in our experimental analysis.

4.1 Safe landmark actions

In this section we use A1-AS to extend the notion of land-
mark actions. We start by extending the notion of landmark
vertices to safety-net augmented landmark vertices (or sn-
augmented landmark vertices) that account for the number
of landmarks that the agent missed. We then use these to
extend the notion of landmark actions to safety-net aug-
mented landmark actions (or sn-augmented landmark ac-
tions) which account for the event that the agent misses a
landmark.

SN-augmented landmark vertices An sn-augmented
landmark vertex (v, p) uniquely defines the agent’s state.
Here, v € VL denotes the agent’s location and p € [n] de-
notes the total number of landmarks that the agent is still
allowed to miss (the remaining safety net). Let Xgue =
W X [n] denote the set of all such safe landmark vertices.

Given an sn-augmented landmark vertex = (v, p), we
will denote by v(z) and p(z) the landmark state v and the
remaining number of landmarks that the agent is allowed to
miss, respectively.

SN-augmented landmark actions An sn-augmented
landmark action Asyge : (S, Xsafe, 27) — 2%s is a method
of conveying a single instruction while accounting for uncer-
tainty in detecting a landmark. To this end, this instruction
includes the primary landmark that the agent is supposed to
be looking for, as well as a backup landmark that is used to
detect the case of missing the primary landmark. An exam-
ple of such an instruction would be “follow this street until
you see a gas station; however, if you see a a pizza store
then you missed the gas station.” In this example, the pri-
mary landmark is gas station and the backup landmark is the
pizza store.

Note that AS ensures that the backup landmark will be
detected. Furthermore, from A4, it follows that once n land-
marks have been missed, there is no need to provide a
backup landmark. Similarly, A2 ensures that when reaching
the goal there is no need to provide a backup landmark.

In the following we formalize these cases. Given a state
z € Xgafe and a junction-action sequence S € S, we define
the following types of sn-augmented landmark actions.

In case both a primary landmark ¢; and a backup land-
mark /5 are utilized, the (non-deterministic) outcomes of the
sn-augmented landmark action are given by:

Asate (S, @, {01, £2}) = {(v1, p(2)), (v2, p(x) = 1)} (D)
where p(z) > 0, v1 = Ap(S,v(x),l1), va =
Ar(S,v(x),¢3) and v, appears before v, in the ordered se-
quence V' (v(z), S) for some vy, vy € VI

In case n landmarks have already been missed, the sn-
augmented landmark action is defined as:

Asate (S, 7, {l1}) = {(v1,0)} 2)
where p(xz) = 0 and v; = Ap(S,v(z), ;) for some vy, €
VL.

Finally, if v, = (Eg, eg) € W is the goal landmark state,
the sn-augmented landmark action is defined as:
Asate (5, 2, {ly}) = {(vg, p(2))} 3)
where vy = AL (S, v(x), £,).



Agu ttl{lé)M

(F oal, 1)

et (start, 1), {fo, (1})

Figure 3: The plan with degree of safety net (n = 1) for the
scenario introduced in Fig. 1.

Transition probabilities SN-augmented landmark ac-
tions defined in Eq. 1 are associated with two possi-
ble outcomes, corresponding to detecting and missing the
primary landmark. For each sn-augmented landmark ac-
tion Agae (S, x, 01, f2) there are associated probabilities py
and p2 (where po = 1 — p;). Here, p; and p, correspond to
the probability to detect and miss landmark ¢; when taking
the junction-action sequence S from state x, respectively.
The sn-augmented landmark actions defined in Eq. 2 and 3
are deterministic.

4.2 LBR with safety nets problem formulation

We are now ready to describe our formulation of LBR with
safety nets. Given the list of landmarks L, the directed road-
network GV, start and goal landmark states v,, vy € V1, and
a safety net degree n, the problem of LBR with safety nets
can be cast as an expected shortest-path problem on a new
graph Gsae = (Xsate, E'sate) Which we call a safe landmark
graph.

As mentioned in Sec. 4.1, the set of vertices of Ggype 1S
defined as Xsae = VL X [n]. An edge exists in Ggyp be-
tween two sn-augmented landmark vertices g = (v, po)
and z1 = (v1,p1), where v1 = (¢, e1), if there exists
some junction action sequence S and some sn-augmented
landmark action Agug such that 21 € Agag(S, zo, L') and
{1 € L'. The cost of this edge is the sum of the costs in Gy
of the edges traversed when following the landmark action
Asafe (S, g, L'). The probability of this edge is the probabil-
ity associated with taking this action and reaching x1.

We set z; = (vs,n) and Xy = {(vg,%) | i € [n]}
to be the start state and the set of goal states, respectively.
We define a plan as a tree on the graph G, rooted at x4
where all the leaves belong to X, and set H(ms,X ) to
be the set of all possible plans. The cost and probability to
reach a leaf state z, € Xg of a plan m € II(z,, X,) is
the sum and product of the costs and probabilities along the
edges of 7 from z, to X, respectively. The cost of a plan
m € I(zs, Xy), denoted by c(7), is the expected cost to
reach a goal state in X,. Let 7* = arg min ¢z, x,) ¢(7)
denote the optimal plan and ¢* := ¢(7*) denote its cost.

Finally, we note that a safety net is a plan; it is a sub tree of
the original policy rooted at a backup landmark. An example
illustrating a 1-degree safety net plan can be found in Fig. 3.

5 Efficient Planning with Safety Nets

The problem formulated in Sec. 4 is an MDP. It can be
solved using a variety of existing approaches like RTDP,
LAO* and PPCP. Among these methods, as we demonstrate

Figure 4: Different 1-degree safety-net policies generated
under different landmark-detection probabilities. Road net-
work is marked in solid black, start and goal states are
marked by magenta and green squares, respectively and
landmarks used by the policy are marked using green and
black diamonds for detection probabilities of 0.5 and 0.99,
respectively. Finally, landmarks not used by the policy are
marked using red diamonds and paths with 1-degree and
zero-degree safety nets are marked in solid red and dashed
blue, respectively.

in Sec. 6, PPCP scales the best on our domain while gener-
ating near-optimal solutions.

5.1 Probabilistic Planning with Clear Preferences

PPCP is a heuristic search framework for computing poli-
cies, by running a series of deterministic A*-like searches.
This approach is often much faster than alternative ap-
proaches but provides guarantees on solution optimality
only when certain assumptions are true (Likhachev and
Stentz 2008). In particular, it requires that clear preferences
on multiple outcomes of stochastic actions, as described be-
low, are known and given to the planner.

Clear preferences Under the clear preferences assump-
tion (Likhachev and Stentz 2009; Neuman and Likhachev
2013), for any action with more than one outcome, we are
given an outcome which is “clearly preferred” over the other
outcomes. Specifically, for any state x and action a, the
clearly-preferred outcome ' satisfies the following condi-
tion,

¥ =arg min c(z,a,y)+ " (y) 4

y€Esuce(x,a)
where, succ(x, a) is the set of all the successors of x gener-
ated by executing action a, ¢(x, a, y) is the cost of executing
action a at state « and ending up at state y, and c¢*(y) is the
expected cost of executing an optimal policy from the out-
come state y.

Intuitively, the clear-preference assumption in our domain
can be interpreted as “it is always better for the agent to
be able to detect the primary landmark than to miss it and
detect the backup landmark instead.” More formally, given
any state * € Xgue and its successors xi,zs for some
sn-augmented landmark action as = Asure(s,z, {l1,l2})
where z1 = (v1, p(z)) and z2 = (ve, p(x) — 1), the state 1
is a clearly preferred state. Unfortunately, in our setting the
clear preferences assumption does not hold. For it to hold,
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Figure 5: An illustration of our iOS application. Left: The
screenshot displays the entire plan with safety net degree
n = 1. The start and goal states are marked using red and
checkered flags, respectively. All the landmarks are high-
lighted using blue circular markers. Paths with 1-degree and
zero-degree safety nets are marked in solid blue and dashed
brown, respectively. Landmarks marked in red are the ones
used on the plan. Right: The semantic instructions given to
the agent. The primary and backup instructions are marked
in black and red, respectively.

the expected cost would have to satisfy that ¢(x, as, 1) +
*(x1) < e(z,as,22) + ¢*(x2) where c(x,as,c1) and
c(x, as, co) represent the cost of executing a at x and reach-
ing x1 and xo respectively. While intuitively it seems that
detecting a primary landmark is always better than miss-
ing it, the reason why it may not be the case is that miss-
ing a primary landmark reduces the remaining safety net de-
gree. This reduction may potentially allow the agent to have
a lower cost plan since there is less chances left to miss a
landmark.

While the violation of clear preferences precludes the
guarantee of solution optimality, we demonstrate experi-
mentally in the following section that solutions reported are
near optimal.

6 Implementation and results

In this section we present experiments demonstrating our
model’s capabilities to capture the intuitive notion of land-
mark based routing both in simulation (Subsec. 6.1) as well
as in real environments (Subsec. 6.2). We conclude with
simulations comparing our PPCP-based implementation to
alternative algorithms (Subsec. 6.3).

Our implementation of the framework is in C++. All our
experiments were carried out on a machine with § GB RAM
clocked at 2.7 Ghz, operating on Ubuntu 14.04 operating
system. For algorithms that require a heuristic function, we
used the Euclidean distance between the perpendicular pro-

jections of the landmarks in the current state and the start
state onto their respective connected roads.

6.1 Model evaluation

Our first experiments demonstrate how policies should be
biased towards taking paths that contain prominent land-
marks (landmarks with high-detection probabilities). Con-
sider Fig. 4 where we computed the optimal policy once
when all the probabilities of detecting the landmarks are 0.5
(Fig. 4a) and once after changing one landmark to be promi-
nent (Fig. 4b).

As can be seen, using the prominent landmarks requires
additional contingency plans, or a safety net, but this will
happen with small probability making this policy the opti-
mal one.

6.2 Real-world environment

To demonstrate landmark-based routing for human-agent
navigating, we developed a smart phone application (10S
application) that allows to generate intuitive plans. The ap-
plication queries routes and landmark data from an on-line
map database (OpenStreetMap contributors 2017) and gen-
erates plans using our PPCP-based planning framework. As
shown in Fig. 5, the application generates instructions along-
side with visuals of the landmarks that need to be tracked.
These instructions are derived from the actions in our plan-
ning framework. The agent also has access to the entire plan
marked on the map. Average planning time for finding poli-
cies in this setting for a safety net degree of n = 1 is 2.8
secs.

While extensive user studies using this application is be-
yond the scope of this work (see Sec. 7), anecdotal feedback
is that it is intuitive to use.

6.3 Planning times on synthetic environments

To evaluate the performance of our planner we generated a
set of synthetic environments with randomly scattered land-
marks (see Fig. 6¢). We compared our PPCP-based planner
to RTDP (Bonet 1998) and LAO* (Hansen and Zilberstein
2001), allowing each planner to run at most ten minutes.

For each environment, we considered 30 randomly-placed
start and goal pairs. For each query, we considered a safety
net degree ranging from zero to nine. Algorithm runtimes
are depicted in Fig. 6a and 6b.

Finally, we note that (i) for all three planners, the mem-
ory consumption is roughly identical and that (ii) the quality
of the solution obtained by PPCP was no more that 0.01%
higher than the optimal cost computed by RTDP and LAO*.
This demonstrates empirically that the significant speedup
obtained by relaxing optimality guarantee and using PPCP
comes with a very small compromise on the solution quality
obtained by the planner.

7 Conclusion and future work

Our primary focus in this work was formally modeling
the intuitive way in which landmarks are used for convey-
ing instructions and for creating contingency plans by hu-
man users. We introduced the framework of safety nets and
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Figure 6: Planning time comparison of PPCP, RTDP and LAO” for varying degrees of safety net on the simulated environments
consisting of (a) 15 x 15 junctions and (b) 25 x 25 junctions respectively. (c¢) An illustration of a plan with safety net degree of
one on one synthetic environment. Here, the road network and junctions are marked in black. All landmarks are marked using
red diamond symbols, the start and goal state are marked in magenta and green squares, respectively. Paths with 1-degree and
zero-degree safety nets are marked in solid red and dashed blue, respectively. Finally, all the landmarks considered on the plan

are marked using green diamonds.

showed that the problem of planning with safety nets un-
der the assumption that the agent is allowed only to miss at
most n landmarks is a tractable problem. This assumption
allows us to construct a graph-planning problem that can
be efficiently solved using PPCP. Experimentally, it out-
performs and scales better than popular alternatives while
generating near-optimal solutions.

Immediate next steps are to perform user studies to (i) ver-
ify the validity of our model, specifically assumptions A4
and AS and to (ii) verify the intuitiveness of the applica-
tion developed. Assumption A4 is bound to hold for large
enough values of n and a natural question that we leave for
future work is how to determine the value of n for a given
environment (and possibly for a given user). Assumption AS
may prove to be too restrictive for certain users. Using the
framework we developed, we can easily relax it to assume
that the user can miss at most k& consecutive landmarks (for
some small k). This will relax the assumptions that we take
but will come at the price of more cumbersome instructions.
An example of such an instruction for k£ = 2 would be “fol-
low this street until you see a gas station; however, if you see
a a pizza store then you missed the gas station. If you see a
coffee shop, you missed both the gas station and the pizza
store”.

While the immediate applicability of our framework de-
pends on the aforementioned user studies. Both the model
we developed as well as the algorithmic tools to plan in
such a model are general enough to accommodate for slight
changes to our assumptions.

Finally, in future work, we aim to develop an extension to
our algorithm that is capable of handling uncertainty in the
start state. Addressing this would allow for the framework
to be used to perform re-planning in case the agent gets lost
but has some idea where he or she might be located.
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