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Abstract

Recent work in bidirectional front-to-end heuristic search
(Bi-HS) has led to the development of three different algo-
rithms with very different behavior: MM, NBS and GBFHS.
This paper presents ongoing research about their lower and
upper bounds and the underlying reasons for them.

Introduction
Recently, new lines of research in Bi-HS have been explored
with success. First, Holte et al.(2017) proposed MM1, which
uses a priority function so no nodes are expanded beyond
the midpoint. MM was generalized to fMM (Shaham et al.
2017) so it can meet at different splits. Soon after came NBS
(Chen et al. 2017). NBS expands at most twice the minimum
number of necessarily-expanded nodes up to the last f layer,
making it near-optimal. Finally, GBFHS (Barley et al. 2018)
keeps explicit f and g limits, the latter for each side and
updated by a split function. GBFHS is well-behaved (guar-
anteed not to expand more nodes for the same split if the
heuristic improves up to the last f layer), and ensures opti-
mality upon first collision in unit-cost domains.

Still, a clear picture of the relationship between them is
missing - i.e. fMM and GBFHS never expand nodes beyond
the meeting point, but GBFHS has other beneficial proper-
ties and a lower upper bound. Also, NBS is near-optimal,
but it is unclear whether other Bi-HS algorithms may be too.
We study this and, after identifying the specific conditions of
these desirable properties, we propose an easy to implement
and to understand algorithm that is near-optimal.

Comparing Must- and Never-Expand Nodes
In unidirectional search, any node n such that f(n) < C∗

must be expanded. However, in Bi-HS one side may rise C
(the current lower bound on C∗) up to C∗ while nodes with
f(n) < C∗ remain unexpanded. If the heuristic is consistent
and the graph is undirected, nevertheless, a set of sufficient
conditions depending on C∗, ε and γ (the cost of the edge
with the highest cost) can be found, and they are the same
for both fMM and GBFHS. Lemma 1 compares MM and
GBFHS with a meet-in-the-middle split function (MSF).
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1All algorithms use ε if possible.

Lemma 1. The set of must-expand nodes Sme of MM and
GBFHS with a MSF is, ∀n ∈ Sme, (1) and (2) hold true:

1. f(n) < C∗ − 2γ

2. g(n) <
C∗ − ε− γ

2
This is consistent with the experiments from Barley et al.

(2018), in which the lower bound becomes the same as the
strength of the heuristic degrades. On the other hand, in the
experiments the upper bound remains consistently higher for
MM. The sets of never-expand nodes are as follows:
Definition 1. The set of never-expand nodes Sne of MM is,
∀n ∈ Sne, (1) or (2) holds true:

1. ff (n) > C∗ ∧ fb(n) > C∗

2. gf (n) >
C∗ − ε

2
∧ gb(n) >

C∗ − ε
2

Definition 2. The set of never-expand nodes Sne of GBFHS
with a MSF is, ∀n ∈ Sne, (1) or (2) holds true:

1. ff (n) > C∗ ∧ fb(n) > C∗

2. gf (n) ≥ gLimf ∧ gb(n) ≥ gLimb

gLimf = bC
∗ − ε+ 1

2
c and gLimb = dC

∗ − ε+ 1

2
e or

vice versa. Hence, when
C∗ − ε

2
= bC

∗ − ε+ 1

2
c, a whole

g layer may be expanded by MM but not by GBFHS. This
highlights the existence of two different g layers within the
last f layer in Bi-HS, which has an important impact on the
performance of the algorithm. GBFHS also commits to a
whole g layer, which allows stopping upon first collision in
unit-cost domains, affecting the average case too.

The meeting point of NBS is not known beforehand, but
under the assumption that NBS, fMM and GBFHS meet at
the same point, we can establish a comparison about Sne.
NBS does not impose sufficient g conditions for Sne, so its
Sne will be equal or smaller than MM’s and GBFHS’s, with
a worse worst-case. In fact, neither fMM nor GBFHS expand
nodes beyond the meeting point, but NBS may.

Lastly, GBFHS is well-behaved because it uses g limits
tied to C, which avoids committing to heuristic plateaus
without raising C. This does not mean that GBFHS is su-
perior to fMM in all cases: expanding by g means that a
solution in the last f layer may be found later, so GBFHS
may have to expand nodes that fMM does not.
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Pruning Power of NBS
Other Bi-HS algorithms can expand nodes alternatively on
both sides as NBS does. Any algorithm whose fMin is
monotonically increasing enforces a lower bound based on
f . Thus, the advantage of NBS comes from delaying the ex-
pansion of pairs of nodes such that gf (u) + gb(v) + ε > C.
Theorem 1. Assume all expanded nodes were expanded
with optimal g. Let n be a forward node and gCMinb =
min

s∈Openb

gb(s) such that fb(s) ≤ C. If gf (n) + gCMinb +

ε > C then there cannot be a solution path of costC through
n. The backwards case is analogous.

Using Theorem 1 we propose Near-optimal Bidirectional
Baseline (NBB, Algorithm 1). Expand(d) expands a node
in direction d with minimum g among nodes n such that
fd(n) ≤ C, updating bestSolution. C is updated using The-
orem 1 (lines 6 and 7 of Algorithm 2). nextFMin(C) returns
the minimum f value bigger than C in the open lists. Run-
TieBreaker() is an optional procedure invoked after increas-
ing C that aims to quickly find a collision along paths of C
cost.This allows raising C quickly while having the possi-
bility of implementing a good tie-break for the last layer.

Algorithm 1 Near-optimal Bidirectional Baseline
1: bestSolution⇐∞; C ⇐ 0; fw ⇐ true
2: while Openf 6= ∅ ∧Openb 6= ∅ do
3: if UpdateC() then
4: RunTieBreaker()
5: end if
6: if bestSolution ≤ C then
7: return bestSolution
8: end if
9: Expand(fw); fw ⇐ ¬fw

10: end while
11: return bestSolution

Algorithm 2 UpdateC
1: updatedC ⇐ false
2: if fMin > C then
3: C ⇐ fMin
4: updatedC ⇐ true
5: end if
6: while gMinf + gMinb + ε > C do
7: C ⇐ min(gMinf + gMinb + ε, nextFMin(C))
8: updatedC ⇐ true
9: end while

10: return updatedC

Barring RunTieBreaker(), NBB is near-optimal. Its be-
havior is analogous to NBSA’s (Shperberg et al. 2019), so
it could be seen as a version of NBS. However, NBB was
developed independently from NBSA with different pseu-
docode and does not require priority queues for nodes, so
we use g-f buckets (Burns et al. 2012) instead.

Table 1 compares NBS and NBB on: 16 Pancakes (GAP
heuristic, the first k pancakes are ignored to get a weaker

Domain NBS NBSn NBB NBBn 0-C∗

Pancake (0) 260 68 733 58 4%
Pancake (1) 17162 17162 14373 12624 82%
Pancake (2) 685808 685808 442832 434953 94%
Pancake (3) 6550k 6550k 4725k 4717k 98%
15-Puzzle 12748k 12709k 12067k 11739k 86%
DAO 11858 11713 12092 11661 55%
Mazes 6558 6556 6557 6556 75%

Table 1: Comparison of NBS and NBB. Best result in bold.

heuristic - 100 random problems); Korf’s 15-Puzzle in-
stances with Manhattan distance; and the Dragon Age: Ori-
gin (DAO) maps and the ten hardest mazes from Sturtevant’s
grid-based pathfinding benchmarks with the octile heuristic.

NBS and NBSn are the average expanded and necessary
(fx(n) < C∗) nodes of NBS (same for NBB). 0-C∗ is the
percentage of problems in which NBB expanded no nodes
in the last f layer (NBB = NBBn). As NBB tends to raise
C earlier, it consistently expands similar or fewer neces-
sary nodes than NBS. In a high number of problems NBB =
NBBn, so increasing C quickly leads to good performance.
This makes NBB competitive in the number of expanded
nodes too despite having a very bad tie-break by default, and
justifies having a tie-breaking procedure for the last layer.
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