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In the future, it is expected that autonomous agents will
take a major role in our life. They will be delivering goods,
serving as a transportation solution, and maintaining surveil-
lance and security. A fundamental task such agents will
have to perform is path planning, where agents aim to reach
their goals as fast as possible but without colliding with
each other. This is known as the Multi-Agent Pathfind-
ing (MAPF) problem, and has been studied extensively
in recent years (Sharon et al. 2015; Felner et al. 2017;
Ma et al. 2019, inter alia).

However, communication between the agents and to/from
a centralized controller (if exists) can be vulnerable to se-
curity breaches. For example, an unencrypted Wi-Fi used
with a drone allows any individual to connect and hack the
drone. We explore such a scenario, where one of the mo-
bile agents was hacked and a malicious entity gained access
to it. This malicious entity learns about the planned routes,
and gains the ability to build a new routes and introduce a
number of unplanned actions. In this work, we introduce
the Maximum Damage Route (MDR) problem, which is the
problem of assessing the maximum damage that the mali-
cious entity can cause in this context. We formulate MDR
as a heuristic search problem, and propose an A*-based al-
gorithm that solves it optimally. Given a limited budget for
protective measures, we show how solving MDR problems
can help to choose which agent to protect.

Background and Problem Definition

A MAPF problem is defined by a tuple 〈G, k, s, t〉 where
G = (V,E) is an undirected graph, k is the number of
agents, s : [1, . . . , k] → V maps an agent to its start node,
and t : [1, . . . , k] → V maps an agent to its target (goal)
node. A plan for an agent i is a sequence of actions such
that if agent i is in s(i) and executes these actions then it
will end up in t(i). There is a conflict between plan πi for
agent i and πj for agent j if according to these plans the
agents will occupy the same node or the same edge at the
same time. A joint plan for a set of agents is a set of plans,
one for each agent. A solution to MAPF problem is a joint
plan in which no pair of plans has a conflict. The makespan
of a solution Π = {π1, . . . , πk}, denoted M(Π) is the max
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over the length of its constituent plans.
In our setting, there exists a malicious entity that takes

control of one of the agents. It can direct that agent to per-
form actions that are different from those planned for it by
the central controller. We refer to that agent as the com-
promised agent and refer to an action that differs from the
planned action as an abnormal action. Without loss of gen-
erality, we assume that the compromised agent is agent 1.

We make the following assumptions about how the agents
are controlled, the knowledge of the malicious entity, and
what is can make the compromised agents do. The joint plan
the agents are following is computed by a central controller.
The controller always verifies that the plans it generates do
not conflict. All non-compromised agents follow the joint
plan unless a collision is about to occur in the next time step.
In such a case, the agent avoids the collision by staying in
its current location. The joint plan is then modified to avoid
future conflicts by adjusting the plan of that agent and, if
needed, the plans of other agents. The compromised agent
may perform at most B of abnormal actions, where B is a
parameter. We limit the number of abnormal actions a com-
promised agent may perform to reflect the malicious entity’s
desire to hide its intentions and its hold on the compromised
agent. In addition, we limited abnormal actions to only de-
viate by at most 90 degrees from the planned action.

After the compromised agent performs an abnormal ac-
tion, it immediately receives a new non-conflicting plan
from the central controller. For a joint plan Π and an abnor-
mal action a, we denote by a(Π) the joint plan computed by
the central controller after performing a. Note that a(Π) and
Π are the same for the first t−1 actions. An interruption plan
E = (e1, . . . eb) is a sequence of abnormal actions ordered
from earliest to latest. For a joint plan Π and an interrup-
tion plan E, we use the term abnormal execution, denoted
SYM(Π, E), to denote the sequences of actions the agents
execute given that the abnormal actions in E are executed.

We assume the malicious entity can compute the abnor-
mal execution for any joint plan Π and interruption plan
E. The malicious entity’s objective is to maximize the
makespan of the abnormal execution.

Definition 1 (MDR). An MDR problem is defined by the
tuple PMDR = 〈Π, B〉 where Π is a solution to a MAPF
problem and B is the budget of allowed abnormal actions.
A solution to PMDR is an interruption plan with at most

Proceedings of the Twelfth International  
Symposium on Combinatorial Search (SoCS 2019)

208



Agents

Runtime 5 6 7 8 9 10

B =1 0.19 0.22 0.24 0.35 0.36 0.36
B =2 1.04 1.46 1.57 1.89 2.16 2.27
B =3 12.54 20.85 21.97 25.13 28.48 31.03

Damage 5 6 7 8 9 10

B =1 1.12 1.14 1.04 0.95 0.89 0.86
B =2 2.50 2.51 2.37 2.28 2.19 2.12
B =3 4.02 4.08 3.85 3.58 3.51 3.40

Table 1: Results of MDR experiments on room maps.

B abnormal actions. An optimal solution is an interrup-
tion plan E such that for any other solution E′ it holds that
M(E) ≥ M(E′).

MDR as a Search Problem

We solve MDR by formulating it as a search problem,
and use the well-known A* algorithm (Hart, Nilsson, and
Raphael 1968) to solve it. A state consists of the current
time step t, the current joint plan Π, and the remaining num-
ber of abnormal actions b ≤ B. The actions applicable in
a state correspond to the compromised agent performing in
the next time step either its planned action or an abnormal
action. A goal state is a state in which all agents reached
their goals or when the number of allowed abnormal actions
is zero. The objective is to find a goal state with maximum
cost.

To to solve MDR, we adapt A* as follows. Each state n =
〈t,Π, b〉 is associated with two values, cost(n) and f(n).
cost(n) is the makespan of the Π. f(n) is equal to cost(n)
if n is a goal state. Otherwise, it is an upper bound to the cost
of any goal state reachable from n. In particular, for a non-
goal state n = 〈t,Π, b〉, we used the following heuristic:
f(n) = M(Π) + b · k, where k is the number of agents.
f(n) is indeed an upper bound of all goals under n because
an abnormal action can be repair by having all non-delayed
agents wait one time step (Atzmon et al. 2018). In every
iteration, A* for MDR expands the state n with the highest
f(n) value in the open list. The following is easy to prove.

Theorem 1. When A* for MDR expands a goal state, it is
guaranteed to have found an optimal solution.

Experimental Results

We implemented A* for MDR and evaluated it experimen-
tally on a room-like grid. Agents’ starts and goals were se-
lected from a pre-defined set of start vertices and goal ver-
tices, respectively, such that the start and goal of each agent
is adjacent to a start and goal of another agent, respectively.
Next, we created 30 possible sets of initial routes of the
agents by running prioritized planning with random prior-
ities (Silver 2005). For every generated set of initial routes,
and each agent i, we run our MDR algorithm assuming agent
i is the compromised agent, having a budget B of 1, 2, and 3.
We measured the runtime of our MDR algorithm and dam-
age, which is the difference between the makespan of the
initial plan and the abnormal execution.

Table 1 shows the average runtime in seconds (top) and
the average damage (bottom) for different number of agents
(columns) and different values of B (rows). As expected,
larger B allows the compromised agent to cause more dam-
age. Increasing B as well as adding more agents increase
runtime, but increasing B has a much stronger impact. This
is expected, since the size of the search space is exponential
in B but not in k.

Conclusion and Future Work

We introduced the MDR problem, which is the problem of
estimating the maximal damage a compromised agent may
cause to the execution of a MAPF solution. We proposed
an A*-based solution for this problem and demonstrate its
feasibility experimentally. The high-level objective of this
project is to protect autonomous agents against malicious
entities. A possible application of this work is to identify the
weakest link in a set of agents, i.e., the agent that may inflict
the maximal damage if compromised. This can help focus
protective measures such as monitoring various hardening
techniques on these agents, making it harder for a malicious
entity to control them (Wesson and Humphreys 2013). For
example, one use MDR to compute the number of agents
that must be protected in order to limit the maximum al-
lowed damage, assuming that at most one agent can be com-
promised. Developing such preventive measures is a promis-
ing direction for future work.
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