
Unbounded Sub-Optimal Conflict-Based Search in Complex Domains

Thayne T. Walker,1 Nathan R. Sturtevant,2 Ariel Felner2
1 University of Denver, Denver, USA

2 University of Alberta, Edmonton, Canada
3 Ben-Gurion University, Be’er-Sheva, Israel

thayne.walker@du.edu, nathanst@ualberta.ca, felner@bgu.ac.il

1 Introduction

Multi-Agent pathfinding (MAPF) is the problem of find-
ing collision-free paths for multiple agents to their respec-
tive goal locations. MAPF has applications in navigation,
warehouse automation, package delivery and games. Find-
ing optimal solutions to MAPF problems is NP-hard (Yu and
LaValle 2013). However, sub-optimal solutions are accept-
able for some applications. Polynomial time sub-optimal
solvers exist for unit cost graphs (Kornhauser, Miller, and
Spirakis 1984), but may not produce valid solutions in com-
plex domains with non-unit costs, non-uniform action dura-
tions, shaped agents and/or non-holonomic or kinodynamic
movement constraints.

Conflict-Based Search (CBS) (Sharon et al. 2015) is a
state-of-the-art algorithm for MAPF used in the context
of both unit cost and more complex domains. Sub-optimal
variants of CBS have focused on techniques such as fo-
cal search and alternate search prioritization schemes (Barer
et al. 2014; Cohen et al. 2018). This work instead focuses
on relaxing requirements for optimal constraints in order to
achieve further performance gains.

2 Toward More Comprehensive Constraints

CBS searches a conflict tree (CT) in best-first order. Each
node in the CT contains a potential solution, which is a set of
single agent paths, one for each agent. A solution is feasible
if there are no conflicts between paths. Each path is created
using a low-level single agent solver. When CBS chooses
to expand a CT node, it is checked for conflicts. If no con-
flict is detected, it is a goal node. Otherwise, CBS chooses
two agents, i and j, with conflicting paths and performs a
split operation, which means that two child nodes are cre-
ated with constraint sets Ci and Cj . A constraint c ∈ Ci

blocks an agent from performing a set of actions. Then a
single-agent solver is used for both i and j to find new paths
that conform to constraints Ci and Cj respectively. The new
paths then replace the paths for i and j in the respective child
nodes. This process continues until a goal is found.

For completeness, Ci and Cj must be mutually disjunctive
(Li et al. 2019). That is, no pair of conflict-free paths for
agent i and j violates both Ci and Cj . Previous work relied

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on manual verification of the mutually disjunctive property,
but this process can be generalized and automated. It can be
shown that Ci and Cj are mutually disjunctive by showing
that the action sets that they block, Ai and Aj , are mutually
conflicting. Sets of actions are mutually conflicting if for all
pairs of actions (ai, aj) in the Cartesian product Ai×Aj , ai
conflicts with aj .

Reduction to Bicliques The conflicts between a pair of
action sets Ai and Aj (an example of these action sets
is shown in Figure 1(a)) can be represented as a bipartite
conflict graph (BCG). A BCG, G = (U, V,E), has two
sets of vertices U and V such that each u ∈ U represents
an action ai ∈ Ai and each v ∈ V represents an action
aj ∈ Aj . The set of edges E consists of the subset of ver-
tex pairs (u, v)∈U ×V for which the corresponding actions
(ai, aj) ∈ Ai × Aj conflict. This is shown in Figure 1(b).
Although Figure 1(a) shows actions starting from the same
state, actions in Ai and Aj could start from many differ-
ent times and locations. This representation is generalizable
to k agents with k-partite graphs. It is also generalizable to
any domain that reasons about discrete actions for multiple
agents (not just pathfinding domains).

In order to find a mutually conflicting set, a biclique G′=
(U ′, V ′, E′) ⊆ G must be found. A biclique is a fully bi-
connected bipartite graph, that is, E′=U ′×V ′, meaning all
u ∈ U ′ are connected via an edge to all v ∈ V ′. In order to
make Ci and Cj mutually disjunctive, they are constructed
to block the actions represented by U ′ and V ′ respectively.
In order to block the largest set of actions from Ai and Aj , a
max-vertex biclique should be found in G. This can be done

i j

1
2
3
4

5

6
7
8
9
10

(a)

1

2

3

4

5

6

7

8

9

10

(b)

Figure 1: Example showing (a) a set of actions for agents i
and j and (b) the corresponding bipartite conflict graph. A
biclique subgraph is shown in bold.

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

204

8x8

64x64

DAO map: brc202d

10 20 30 40 50 60

0

100

200

300
GCBS GCBS+CA GCBS+CP

80 160 240 320 400

0

100

200

300

Ti
m

e
(s

ec
)

40 80 120 160 200

0

100

200

300

Number of Agents

Figure 2: Comparison of runtime performance

in polynomial time (Garey and Johnson 2002).

3 Sub-Optimal, Complete Constraints

Larger constraint sets are designed to maximize pruning of
the CT. It is possible to increase the size of constraint sets
by relaxing the mutually disjunctive requirement. However,
doing so may result in incompleteness in two ways: (1) ter-
mination without finding a feasible solution or (2) agents
getting stuck moving in circles or waiting without a way to
get to the goal. Both situations will cause CBS to run for-
ever. In order to preserve completeness, we must detect and
avoid these two conditions. For this purpose, we introduce
conditional constraints.

Conditional Constraints A conditional constraint (as op-
posed to a regular permanent constraint) may be turned off,
meaning it no longer blocks any actions. It is turned off by
omitting it from the low-level re-plan step during the split
operation. Turning off a constraint can cause conflicts to be
re-introduced back into the solution. Therefore, mutually-
conflicting actions from the biclique are always permanent
and other actions not in the biclique are conditional.

There are two conditions for turning off constraints which
correspond to the causes of incompleteness: (1) when a low-
level re-plan returns no path, the re-plan is re-executed,
omitting all conditional constraints. (2) Conditional con-
straints are turned off probabilistically with probability
ρoff = MIN(1, Δ−1

di
) where di is the length of the path for

agent i in the root CT node and Δ is the depth of the CT.
As the search progresses, ρoff increases, causing more and
more conditional constraints to be turned off until eventually
only mutually disjunctive constraints remain, hence com-
pleteness is guaranteed. This approach is not optimal since a
goal node may be found with some optimal actions blocked.

Constraint Set Selection Strategies If mutually disjoint
sets of constraints are permanently enforced, any additional
conditional constraints may be added to Ci that may help
find a solution quicker. We tested two such strategies.

The first strategy called conflicting actions (CA), builds a
BCG, then finds a max-vertex biclique. All actions in the bi-
clique are blocked using permanent constraints. All other ac-
tions in the BCG are blocked using conditional constraints.
This technique pre-emptively blocks all actions within a
temporospatial locality, increasing the likelihood that re-
planned paths will avoid collision.

The second strategy called conflicting paths (CP) accu-
mulates constraints during the CBS feasibility check rou-
tine. The first conflict encountered during the check is the
core conflict. Mutually conflicting actions between agents i
and j in the core conflict are blocked using permanent con-
straints. For every conflict that is encountered thereafter in-
volving agent i or j, conditional constraints for all actions
in the BCG are added to Ci or Cj . As a result, when agent
i (resp. j) is re-planned as part of the split operation, it will
attempt to avoid conflicts with all other agents. This tech-
nique can result in a significant performance improvement
because of aggressive pruning high in the CT.

4 Empirical Results

A comparison of the runtime of our two strategies versus
previous state of the art, greedy CBS (GCBS) (Barer et al.
2014) is shown in Figure 2. Statistics in the plots are the av-
erage runtime over 50 problem instances on 16-connected
grids with increasing numbers of agents. Any instance that
was not solved in under 300 seconds is recorded as a failure
and set to 300 seconds. The results show that the conflicting
actions strategy (GCBS+CA) and the conflicting paths strat-
egy (GCBS+CP) can solve for up to three to four times more
agents in the same amount of time compared to GCBS.

References

Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In SOCS.
Cohen, L.; Greco, M.; Ma, H.; Hernandez, C.; Felner, A.;
Koenig, S.; and Kumar, T. 2018. Anytime focal search with
applications. In IJCAI.
Garey, M. R., and Johnson, D. S. 2002. Computers and
intractability, volume 29. Wh Freeman New York.
Kornhauser, D. M.; Miller, G. L.; and Spirakis, P. G. 1984.
Coordinating pebble motion on graphs, the diameter of per-
mutation groups, and applications. Master’s thesis, M. I. T.,
Dept. of Electrical Engineering and Computer Science.
Li, J.; Surynek, P.; Felner, A.; Ma, H.; and Satish, K. T. 2019.
Multi-agent pathfinding for large agents. In AAAI.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40–66.
Yu, J., and LaValle, S. M. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In AAAI,
AAAI’13, 1443–1449. AAAI Press.

Supported by BSF grant #2017692 and NSF grant #1815660

205

