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Abstract

We address a variant of multi-agent path finding (MAPF) with
continuous time and geometric agents. The standard MAPF is
a task of navigating agents in an undirected graph from given
starting vertices to given goals so that agents do not collide.
In the continuous version (MAPFR), agents move in the n-
dimensional Euclidean space along straight lines that inter-
connect predefined positions. We present a new solving ap-
proach based on satisfiability modulo theories (SMT) to ob-
tain makespan optimal solutions. Our SMT-based approach
for MAPFR called SMT-CBSR reformulates the Conflict-
based Search (CBS) algorithm in terms of SMT concepts.

Introduction and Background

In multi-agent path finding (MAPF) (Silver 2005) the task is
to navigate agents from given starting positions to individ-
ual goals. The problem takes place in an undirected graph
G = (V,E) where agents are placed in its vertices with at
most one agent per vertex. The task is to transform the initial
configuration of agents α0 : A → V into the goal configu-
ration α+ : A → V .

We are dealing here with an extension denoted MAPFR
introduced only recently (Andreychuk et al. 2019; Walker,
Sturtevant, and Felner 2018) that considers continuous time
and space. Agents in MAPFR move smoothly between pre-
defined positions in the n-dimensional Euclidean space. In
MAPFR we assume geometric agents of various shapes that
occupy certain volume in the space - circles in the 2D space,
polygons, spheres in the 3D space etc. A collision is defined
as an overlap between agents’ bodies.

Our contribution consists in showing how to apply satis-
fiability modulo theory (SMT) reasoning (Bofill et al. 2012)
in the makespan optimal solving of MAPFR. Makespan op-
timal solutions minimize the overall time needed to relocate
all agents into their goals.

MAPFR shares several components with the standard
MAPF: the underlying undirected graph G = (V,E), set of

∗This work has been supported by the Czech Science Founda-
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agents A = {a1, a2, ..., ak}, and the initial and goal config-
uration of agents: α0 : A → V and α+ : A → V ; but it adds
ρ, an extension defining continuous properties as follows:

• ρ.x(v), ρ.y(v), ... for v ∈ V represent the position of ver-
tex v in the space

• ρ.velocity(a) for a ∈ A determines velocity of agent a

• ρ.radius(a) for a ∈ A determines the radius of agent a;
we assume that agents are circular/spherical with omni-
directional ability of movements

The major difference from the standard MAPF where
agents move instantly between vertices is that in MAPFR
continuous movements of agents between a pair of vertices
(positions) along the straight line takes place. Hence we
need to be aware of the presence of agents at some point
in the space at any time.

Collisions may occur between agents due to their size. In
contrast to MAPF, collisions in MAPFR occur not only in a
single vertex or edge but also on pairs of edges if they are too
close to each other w.r.t. to sizes of agents traversing them.

A solution to given MAPFR ΣR is a collection of tempo-
ral plans for individual agents π = [π(a1), π(a2), ..., π(ak)]
that are mutually collision-free. An example of MAPFR and
its solution is shown in Figure 1.

Solving MAPF with Continuous Time

We observed that conflict-based search (CBS) for MAPF
(Sharon et al. 2015) operates similarly as problem solving in

Figure 1: An example of MAPFR instance with three agents
and its makespan optimal solution.
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the SMT methodology. CBS uses the idea of resolving colli-
sions lazily; that is, a solution of MAPF instance is searched
against an incomplete set of movement constraints. Instead
of forbidding all possible collisions between agents we start
with initially empty set of collision forbidding constraints
that gradually grows as new collisions appear. CBS can be
modified to CBSR a variant for MAPFR as shown in (Andr-
eychuk et al. 2019).

The basic problem solving in SMT divides the satisfia-
bility problem in some complex theory T into an incom-
plete propositional part that keeps the Boolean structure and
a simplified decision procedure DECIDET that decides a
conjunctive fragment of T . The standard SAT solver (Aude-
mard and Simon 2009) solves the incomplete propositional
part and DECIDET then checks if the solution is consis-
tent with axioms of T . If not, an incosistency elimination
constraint c is reported back from DECIDET and the in-
complete model is extended with c for the next iteration.

We rephrased CBSR in terms of SMT as it has been done
with CBS (Surynek 2019). T will be represented by a the-
ory describing movement rules of MAPFR. The plan valida-
tion procedure known from CBSR will act as DECIDET

and will report back a set of collisions found in the current
solution. The propositional part will be taken from existing
propositional encodings of the standard MAPF such as the
MDD-SAT (Surynek et al. 2016) provided that constraints
forbidding collisions between agents will be omitted.

Decision Variable Generation

One important challenge in the SMT approach for MAPFR
is determining the set of decision variables. MDD-SAT in-
troduces decision variables X t

v(ai) and Et
u,v(ai) for discrete

time-steps t ∈ {0, 1, 2, ...} describing occurrence of agent
ai in v or the traversal of edge {u, v} by ai at time-step t.

A significant difficulty in MAPFR is that we need deci-
sion variables with respect to continuous time. Fortunately
we do not need a variable for any possible time but only for
important moments. Important moments are determined by
conflicts generated by CBS. If for example the duration of a
conflict in neighbor v of u is [t0, t+) and agent ai residing in
u at t ≥ t0 wants to enter v then the earliest time ai can do so
is t+ since before it would conflict in v. On the other hand if
ai does not want to waste time (let us note that we search for
a makespan optimal solution), then waiting longer than t+
is not desirable. Hence we only need to introduce decision
variable Et+

u,v(ai) to reflect the situation.
Algorithm 1 shows variable generation up to specified

makespan bound μmax. It is a breadth-first w.r.t. time search
of the space-time. All possible relevant waitings in a vertex
at hand are generated at lines 15-19.

Conclusion

We suggested a novel algorithm called SMT-CBSR for the
makespan optimal solving of the multi-agent path finding
problem with continuous time and space based on satisfia-
bility modulo theories (SMT).

For the future work we assume extending the concept with
other cumulative objectives like the sum-of-costs (Sharon et

Algorithm 1: Generation of decision variables in the
SMT-based algorithm for MAPFR solving

1 generate-Decisions (ΣR = (G = (V,E), A, α0, α+, ρ),
conf , μmax)

2 VAR ← ∅
3 for each a ∈ A do
4 OPEN ← ∅
5 insert (α0(a), 0) into OPEN

6 VAR ← VAR ∪ {X 0
α0(a)

(a)}
7 while OPEN �= ∅ do
8 (u, t) ← mint(OPEN)
9 remove-Mint(OPEN)

10 if t ≤ μmax then
11 for v | {u, v} ∈ E do
12 Δt ← dist(u, v)/ρ.velocity(a)
13 insert (v, t+Δt) into OPEN

14 VAR ← VAR ∪ {Et
u,v(a),X t+Δt

v (a)}
15 for v | {u, v} ∈ E ∪ {u, u} do
16 for (a, {u, v}, [t0, t+)) ∈ conf do
17 if t+ > t then
18 insert (u, t+) into OPEN

19 VAR ← VAR ∪ {X t+
u (a)}

20 return VAR

al. 2013). We also plan to extend the node generation scheme
to directional agents where we need to add a new dimension
in addition to space and time: direction (angle).
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