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Abstract

In this short paper, we summarize the results on regret mini-
mization obtained in (Storandt and Funke 2019). Given a set
of objects where each object has multiple attributes, regret is
a useful measure to select a subset of bounded size which rep-
resents the full set of objects well. We propose a new variant
of regret — the so called average regret — and design a greedy
algorithm which computes a subset with provably small aver-
age regret in polynomial time. In addition, we conduct exper-
iments on real-world instances to evaluate the performance of
the greedy algorithm in practice.

Motivation

In multicriteria decision making, there is often an abundance
of options to choose from. For example, the number of prod-
ucts of a certain type in an online warehouse (as, e.g., lap-
tops) is easily greater than one hundred. Showing all options
to the user at once is then either impossible or leads to an
incomprehensible result representation. Therefore, the goal
is to preselect a small subset of the available options and
only present that subset to the user. But as user preferences
may differ widely, it is not a priori clear which subset is
the best. Some users might, e.g., prefer cheap products, oth-
ers prefer products with good reviews or with certain other
product specific aspects. The regret measure allows to take
all these user preferences into account when deciding for the
best subset. The idea is that each user preference can be for-
malized as a maximization function f over the attributes of
the objects in the set. Given a set S of objects, f(S) then
denotes the utility of the best object in .S for the user. Ac-
cordingly, the regret of a single user that is presented with a
subset S’ of the whole set of options S can be measured as
1 — f(S")/f(S). The smallest regret value of 0 is achieved
when the user is perfectly happy with choosing an option
from S’ instead of S as the best option has still the same util-
ity for him. The largest regret value of 1 is achieved when
all options remaining in .S’ have zero utility for the user. In
general, the regret value can assume any value in [0, 1].
Given not only a single user preference function but a
class of such functions, the maximum regret for a subset
S’ of S is the largest individual regret of any user. Maxi-
mum regret as a measure for subset quality was introduced
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in (Nanongkai et al. 2010). The maximum regret minimiza-
tion problem then asks for a subset of bounded size with the
smallest maximum regret. Two greedy algorithms were pro-
posed in (Chester et al. 2014) and (Nanongkai et al. 2010) to
tackle the maximum regret minimization problem. However,
no approximation guarantees could be proven for those.
There indeed exist approximation algorithms for maximum
regret minimization (Agarwal et al. 2017; Cao et al. 2017,
Asudeh et al. 2017; Kumar and Sintos 2018), but these algo-
rithms require more complex machinery.

Maximum regret as a measure comes with some disadvan-
tages, though. The most prominent is the so called ’drowning
effect’. As the value of the measure is in the end determined
by the regret of a single user, the regret of all users other than
the most unhappy one do not contribute to said value. This
might lead to a strange subset selection in practice. There-
fore, we propose the average regret as a viable alternative:
Instead of minimizing the regret of the most unhappy user,
we minimize the summed regret of all possible users.

Theoretical Results

Given a finite set S of d-dimensional objects and a parameter
q € N, the average regret minimization problem asks for the
subset S’ C S of size ¢ with the smallest possible average
regret among all subsets of that size.

The objects are given as points in Ri. The class of user
preference or utility functions we consider here is the set
of all possible convex linear functions. This is a standard
model for user utility functions also used, e.g., in (Soma and
Yoshida 2017).

The main theoretical result obtained is that the average re-
gret function is supermodular while for the maximum regret
function we can construct examples where the conditions for
supermodularity are violated. Supermodularity is a desirable
property as it allows to construct a reverse greedy algorithm
which selects a subset of size ¢ of the objects with an aver-
age regret value within an instance-based bounded factor of
the optimum. Furthermore, we define the average happiness
function as 1 minus the regret value. We show that this func-
tion is submodular. Therefore, a classical greedy algorithm
can be used to obtain a 1 — 1/ approximation.

Both, the classical and the reverse greedy algorithm re-
quire the efficient computation of the average regret of a
given object subset S’ as a subroutine. We show that this



problem can be translated into the problem of computing
the hypervolume of the convex hull induced by the points in
that subset. In the worst case, this computation takes time
o(|s’ |d2 /4). Although for any fixed d this yields a polyno-
mial time algorithm, we also devise a faster sampling-based
heuristic which estimates the respective volume.

Practical Results

We implemented the mentioned greedy algorithms and the
exact and heuristic volume computation as subroutines. As
benchmarks, we used real-world data (oceanographic data,
flight data and weather data) as well as synthetic data (ran-
dom points in a hypercube). The dimension d varies between
2and 7.

For small desired subset sizes g, our experiments reveal
that the sampling-based volume computation produces the
same result as the exact volume computation. But for ¢ =
16, for example, using exact volume computation leads to
smaller regret values (up to a factor of 40). This comes at
the price of higher running times: While for 1000 synthetic
points with d = 6 and ¢ = 16 the exact volume computa-
tions within the greedy algorithm already take several hours,
the sampling-based heuristic leads to running times of less
than a second. For our most complex real-world benchmark
(about half a million points, d = 7), we could only pro-
duce results when using the sampling-based approach as ex-
act volume computation took too long.

Furthermore, we compared the classical and the reverse
greedy algorithm, which both can be used to tackle the aver-
age regret minimization problem. Figure 1 shows the qual-
ity of the result sets obtained with either of the two algo-
rithms for various values of ¢ (on the synthetic benchmark
with d = 4 and |S| = 1000). It becomes obvious that the
classical greedy algorithm performs way better, especially
for small values of q. At the same time, the standard greedy
algorithm is also superior with respect to running time. This
makes the standard greedy approach the clear winner.

Note that the greedy algorithm can also be used to com-
pute a permutation of the objects in the input set S such that
for any prefix of size ¢ of the objects in the resulting order,
we have a provable guarantee on the average regret with re-
spect to the optimum solution of size ¢. This allows to solve
the problem not only for a single given value of ¢ but instead
for all possible values of ¢ at once.

Conclusions and Future Work

Our theoretical and practical results show that subsets with
small average regret can be efficiently computed, at least for
moderate dimensions d. To faithfully compute the average
regret of object sets with more attributes (e.g., d > 10), a fast
approximation algorithm for the hypervolume computation
would be necessary. Furthermore, it would be interesting to
study the average regret measure on utility function classes
other than the class of convex linear functions.
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Figure 1: Average regret in dependency of the subset size ¢
for the standard (forward) greedy algorithm as well as for
the reverse greedy algorithm (x-axis in logscale).
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