
Enriching Non-Parametric Bidirectional
Search Algorithms — Extended Abstract∗

Shahaf S. Shperberg
CS Department

Ben-Gurion University
Be’er-Sheva, Israel

shperbsh@post.bgu.ac.il

Ariel Felner
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel
felner@bgu.ac.il

Nathan R. Sturtevant
CS Department

University of Alberta
Canada

sturtevant@cs.du.edu

Solomon E. Shimony
Avi Hayoun
CS Department

Ben-Gurion University
Be’er-Sheva, Israel

shimony@cs.bgu.ac.il

Abstract

NBS is a non-parametric bidirectional search algorithm,
proved to expand at most twice the number of node expan-
sions required to verify the optimality of a solution. We in-
troduce DVCBS, a new algorithm based on a dynamic vertex
cover that aims to further reduce the number of expansions.
Unlike NBS, DVCBS does not have any worst-case bound
guarantees, but in practice it outperforms NBS in verifying
the optimality of solutions.

1 Bidirectional Search using Dynamic VC
We introduce a new family of algorithms called Dynamic
Vertex Cover Bidirectional Search (DVCBS). Like NBS
(Chen et al. 2017) DVCBS is based on maintaining a global
lower-bound (LB) among all pairs in the open list and termi-
nates when the current solution cost is greater or equal to this
LB. However, DVCBS differs conceptually from NBS. While
NBS always expands both nodes of a chosen must-expand
pair (MEP), DVCBSworks by maintaining a dynamic version
of the must-expand graph (GMX) called DGMX and greed-
ily expanding a minimal vertex cover (MVC) of the DGMX
at each step.

DGMX is defined as follows. Its structure resembles GMX,
with two main differences: (1) The full GMX is not available
during the search. Instead, DGMX contains only nodes in the
forward frontier (generated, not expanded) for constructing
left vertices, and only nodes from the backward frontier for
constructing right vertices. (2) The value of C∗ is not known
during the search, thus edges of DGMX are defined on pairs
〈u, v〉 such that lb(u, v) < LB. Since LB ≤ C∗, all such
pairs are in fact MEPs of GMX.

Note that DGMX shares all the interesting properties of
the full GMX. Thus, vertices with the same g-value can be
merged to form a weighted vertex (cluster). More impor-
tantly, CalculateMVC() can be directly applied to DGMX
in time linear in the number of its clusters. This is done in
all low-level variants of DVCBSdiscussed below.

1.1 Choosing Nodes for Expansion

There are many possible policies for choosing nodes for ex-
pansion which are based on DGMX and on its MVC. Every

∗Originally published at AAAI-2019
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

node expansion deletes vertices and may add new vertices
to DGMX, invalidating the most recently computed MVC.
However, computing the MVC every time DGMX changes in-
curs extra overhead (albeit linear in the number of clusters in
DGMX). Thus, an efficient expansion policy should balance
between expanding many nodes and maintaining the most
up-to-date DGMX and MVC. We experimented with multiple
expansion policy variants, and found that an efficient bal-
ance between these two extremes is to expand a single clus-
ter (containing all nodes with the same gF - or gB-value) be-
fore re-computing the DGMX. This results in a manageable
amount of MVC computations, while working on reasonably
up-to-date information. Furthermore, since all vertices in a
cluster have the same g-value, LB may increase only after
expanding an entire cluster but never before. We only report
experimental results for this variant.
DVCBS contains several other decision points. First, there

can be several possible MVCs for a given DGMX. Addi-
tionally, as mentioned above, one cluster from MVC should
be chosen and expanded. Finally, the way we order nodes
within the cluster for expansion may affect the number of
expansions before reaching a solution when LB = C∗. We
have experimented with many possible decision choices but
report the results in Section 2 using the best variant as fol-
lows. Select the cluster with the smallest number of nodes
among the clusters with minimal gF - and gB-values, among
all MVCs. Tie breaking for a specific node expansion within
a cluster orders nodes according to their order of discovery.

Pseudo code of the low level of DVCBS appears in Al-
gorithm 1. The life cycle of DVCBS includes the follow-
ing steps: (1) initialize DGMX, (2) CalculateMVC(), (3)
choose the cluster of nodes to expand from the MVC, and
(4) update DGMX. Steps 2-4 are repeated until either an
optimal solution is found or no possible solution exists. To
execute efficiently, DVCBS uses data structures denoted as
CwaitingD and CreadyD, which are similar to the waitingD
and readyD queues of NBS, modified to use clusters.

The most important property of NBS is the 2× bound
guarantee. While DVCBS outperforms NBS on average (see
experiments below), DVCBS is not bounded in its worst case.

2 Experimental Evaluation

We ran experiments on four domains: (1) 50 14-Pancake
Puzzle instances with the GAP-n heuristics (Helmert 2010)

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

196

Algorithm 1: DVCBS Expand a Level
1 while true do
2 while min f in CwaitingD < LB do
3 Move best cluster from CwaitingD to

CreadyD
4 if CreadyD ∪ CwaitingD empty then
5 Terminate search - no solution was found
6 DGMX← BuildDGMX(CreadyD)
7 if DGMXis not empty then
8 MVC ← findMV C(DGMX)
9 Choose and Expand a cluster from MVC of

DGMX.
10 else
11 if CwaitingD.f ≤ LB then
12 Move best cluster from CwaitingD to

CreadyD
13 else
14 return true

(for n = 0 . . . 2), where the n smallest pancakes are left out
of the heuristic computation. (2) The standard 100 instances
of the 15 Puzzle problem (Korf 1985) using the Manhat-
tan Distance heuristic. (3) Grid-based pathfinding: 3150
instances on 156 maps from Dragon Age Origins (DAO)
(Sturtevant 2012); (4) 50 instances of the 12-disk 4-peg
Towers of Hanoi (TOH4) problem with (10+2), and (6+6)
additive PDBs (Felner, Korf, and Hanan 2004).

Our results, reported in Table 1, confirm that NBS and
DVCBS tends to outperform and are more robust than A∗ İn
some cases, e.g., the 15 puzzle, A∗ failed to solve all in-
stances because memory was exhausted.

Since NBS has a 2x bound guarantee, any other algo-
rithm will expand no fewer than half the nodes of NBS,
leaving little leeway. Nevertheless, our new algorithm man-
aged to improve upon NBS DVCBS expands fewer nodes
than NBSbefore finding a VC of GMXε , and before finding a
solution.

The node expansion rates of all algorithms were similar,
with very low variance. Therefore, the number of node ex-
pansions reported in 1 reflect the run-time accurately.

We have also compared DVCBS to A∗ as well as to
MMε (Holte et al. 2017) and BS∗ (Kwa 1989) which are
benchmark Bi-HS algorithms. Table 2 presents the average
number of node expansions for finding a first solution. As
can be seen, DVCBS tends to outperform all others, and is
certainly the most robust to weaker heuristics.

Acknowledgements

This work was supported by Israel Science Foundation (ISF)
grant #844/17 to Ariel Felner and Eyal Shimony, by BSF
grant #2017692, by NSF grant #1815660 and by the Frankel
center for CS at BGU.

Domain Heuristic Algorithm VC: GMX Total

14
Pancake

GAP
A* 32 57
NBS 47 147
DVCBS 30 121

GAP-1 A* 6,404 6,416
NBS 5,870 5,915
DVCBS 4,321 4,344

GAP-2 A* 322,099 322,938
NBS 137,295 137,719
DVCBS 86,292 87,012

15
Puzzle MD

NBS 12,709,517 12,748,107
DVCBS 11,589,837 11,669,720

Grids
DAO Octile

A* 5,322 5,406
NBS 6,561 6,677
DVCBS 5,158 5,545

TOH4

10+2
A* 276,081 276,089
NBS 232,509 232,509
DVCBS 224,233 224,249

6+6
A* 3,239,287 3,268,093
NBS 663,136 681,995
DVCBS 636,375 664,469

Table 1: Experimental results of average node expansions
across domains (using ε = 1)

Domain BS∗ MMε DVCBS A∗

GAP-0 183 149 121 57
GAP-1 5,262 5,048 4,344 6,416
GAP-2 266,442 119,310 87,012 322,938
10+2 174,936 303,189 224,249 276,089
6+6 1,599,018 1,120,392 664,469 3,268,093
MD 12,001,024 13,162,312 11,669,720 N/A

Octile 6,200 7,396 5,545 5,406

Table 2: Average expansions for first solution (using ε = 1)

References

Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R. 2017.
Front-to-end bidirectional heuristic search with near-optimal
node expansions. In Proceedings of IJCAI.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pattern
database heuristics. J. Artif. Intell. Res. 22:279–318.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In SoCS.
Holte, R. C.; Felner, A.; Sharon, G.; Sturtevant, N. R.; and
Chen, J. 2017. MM: A bidirectional search algorithm that is
guaranteed to meet in the middle. Artif. Intell. 252:232–266.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artif. Intell. 27(1):97–109.
Kwa, J. B. H. 1989. BS*: An admissible bidirectional staged
heuristic search algorithm. Artif. Intell. 38(1):95–109.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Trans. Comput. Intellig. and AI in Games
4(2):144–148.

197

