Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

Generalized Target Assignment and Path Finding Using Answer Set Programming

Van Nguyen
Computer Science Department
New Mexico State University

Torsten Schaub
Computer Science Department
University of Potsdam

Introduction

Multi-Agent Path Finding (MAPF) deals with teams of
agents that need to find collision-free paths from their re-
spective starting locations to their respective goal locations
on a graph. This model can be applied to a number of
applications (e.g., autonomous warehouse systems (Wur-
man, D’ Andrea, and Mountz 2008)). For example, in an au-
tonomous warehouse system (illustrated by Figure 1), robots
(in orange) navigate around a warehouse to pick up inven-
tory pods from their storage locations (in green) and drop
them off at designated inventory stations (in purple) in the
warehouse. Several extensions of MAPF have been pro-
posed (e.g., combined Target Assignment and Path Finding
or TAPF).

While TAPF better reflects real-world systems with ho-
mogeneous agents, such as our motivating application, it still
has a key limitation: It assumes that the number of agents
equals the number of tasks to be allocated. In our motivating
application, there are typically more tasks than agents. As
such, agents have to move towards a new task after complet-
ing their current task. Therefore, we propose Generalized
TAPF (G-TAPF), a generalization of TAPF that allows the
number of tasks to be greater than the number of agents. We
also propose a new objective, which better captures more ap-
plications including our motivating warehouse application:
Each task has an associated deadline that indicates the time
at which it must be completed. We also propose use an-
swer set programming (ASP) (Lifschitz 2002) as the general
framework for solving the new G-TAPF problems.

Generalized TAPF Problems

A Generalized TAPF (G-TAPF) problem is given by a triple

P = (G,R,T), where

e G = (V,E) is an undirected connected graph, where V/
and E correspond to locations and ways of moving be-
tween locations for the agents;

e IR is a set of agents. Each » € R is specified by a pair
(t,s), t is the type of task that can be accomplished by r
and s € V is the starting location of r;

e T'is a set of groups of tasks. Each group in 7" is specified
by a set of orders O and a positive integer d representing

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Philipp Obermeier
Computer Science Department
University of Potsdam

194

Tran Cao Son
Computer Science Department
New Mexico State University

William Yeoh
Computer Science Department
Washington University in St. Louis

v

m
1l

Illfli

-0
sl

7
3
:
2

Figure 1: Layout of an Autonomous Warehouse System
[Wurman et al., 2008]

the deadline of the orders in the group; each o € O is a
pair (g,t) where g and ¢ are the destination and type of
the order, respectively.
For an agent r, type(r) and loc(r) denote the type and start-
ing location of agent r, respectively. For a task ¢, type(t) and
destination(t) denote the type and destination of task ¢, re-
spectively. For a group T of tasks, deadline(T') denotes the
deadline of tasks in group 7'.

Agents can move between the vertices along the edges of
G, one edge at a time, under the restrictions: (a) two agents
cannot swap locations in a single timestep; and (b) each lo-
cation can be occupied by at most one agent at any time.
A path for an agent r is a sequence of vertices o =
(v1,...,vy) if (i) the agent starts at vy (i.e., v1 = loc(r));
and (ii) if for any two subsequent vertices v; and v, 1, there
is an edge between them (i.e., (v;,v;+1) € E) or they are
the same vertex (i.e., v; = v;41). n is called the length of «
and is denoted by length(a).

An agent r completes a task ¢ via a path o = (vy, ..., vy,)
if type(r) = type(t) and destination(t) is one of the ver-
tices in «, i.e., destination(t) € {v1,...,v,} . A task is
said to be completed when an agent completes it. A group
of tasks is completed when every task in the group is com-
pleted. A G-TAPF problem P is completed when every
group of tasks in 7" is completed. A solution of a G-TAPF
problem P is a collection of paths S = {«,. | » € R} for the
agents in R so that all tasks in 7" are completed.

Depending on the application, one can create different G-
TAPF variants. We describe several variants below:

o Equal numbers of tasks and agents: This variant is the



original TAPF (Ma and Koenig 2016), where there is a
one-to-one allocation of tasks to agents.

e Group completion: Agents must complete all groups of
tasks in some order. More precisely, for every pair of dis-
tinct groups of tasks, all tasks in one group must be com-
pleted before all tasks in the other group.

o Task deadlines: Agents must complete all the tasks ¢ €
T; within a group 7; within the deadline of the group
deadline(T;).

o Completion with checkpoints: In order to complete a task
t, before and/or after reaching the goal destination(t), an
agent must visit some other designated checkpoints. Un-
der this view, the autonomous warehouse system (Wur-
man, D’ Andrea, and Mountz 2008) can also be viewed as
a G-TAPF variant, where to complete a task ¢, an agent
needs to pick up a pod at a checkpoint before bringing it
to the inventory station (= destination(t)) and then re-
turning the pod to another checkpoint.

One can optimize different possible objectives:

e The makespan of a solution S is defined by
maXq,eg length(a). Minimizing this value is appro-
priate if one wants to minimize the total time taken
by the agents to complete all the tasks in the problem.
Alternatively, one can also seek to find a solution whose
makespan is within a maximum makespan threshold.
which is appropriate in problems where there is a deadline
in which to complete all the tasks.

e The fotal path cost of a solution S is defined by
> acs length(a). Minimizing this value is appropriate if
the cost of a path is measured by fuel consumption and
one wants to minimize the total amount of fuel used. As
above, one can also seek to find a solution whose total
path cost is within a maximum threshold.

Modeling G-TAPF's Using ASP

Let P=(G, R, T) be a G-TAPF problem and n be an integer
denoting the upper bound on the solution makespan. Each
program P will be represented as an ASP program consist-
ing of different groups of rules:

o G-TAPF input representation: This group of rules encodes
the given problem P such as the graph G, the groups of
tasks and the tasks of P;

o Task allocation: This group of rules ensures that each task
in P is assigned to exactly one agent of the correct type;

e Planning rules: This group of rules is similar to the set of
rules for planning developed by the ASP community. It in-
cludes (7) rules for reasoning about effects of actions (e.g.,
the locations of the robots will change if they move to the
neighbor nodes); (i7) inertial rules, i.e., a fluent value does
not change if no action that changes the fluent value oc-
curs; (ii7) rules for generating the action occurrences; (iv)
rules for preventing actions, that cannot be executed, to
occur (e.g., two robots cannot switch locations);

o Group completion: This group of rules is introduced when
group completion needs to be enforced. It creates an order
among the groups of tasks and enforces the completion of
the tasks in accordance with the created order.

195

e Solution verification, checkpoints, and deadlines: Rules
for solution verification need to check for the achieve-
ment of tasks as well as the satisfaction of various require-
ments such as group completion, deadlines, and check-
points. When the problem has multiple checkpoints, the
rules will ensure that the checkpoints are visited in the
order they are specified.

Solving G-TAPFs. The ASP code can be used to compute
solutions with makespan n, assuming it exists; or to find
a solution with the minimal makespan. Using built-in op-
timization features of ASP solvers, one can generalize our
methods for other objectives (e.g., minimizing the total path
cost). Computing optimal solution is computational inten-
sive due to the fact that the number of possible assignments
between tasks and robots is exponential in the size of the
problem. For this reason, we also propose a greedy strategy
for solving G-TAPFs.

Our experimental results show that CBM is better in sim-
ple TAPF problems with few conflicts, but worse in difficult
problems with more conflicts. For a more complete descrip-
tion of the model, solving process, and experimental results,
please refer to the longer version of this paper that appeared
at [ICAI 2017 (Nguyen et al. 2017).

Conclusions

Both MAPF and TAPF models suffer from their limiting as-
sumption that the number of agents and targets are equal.
In this paper, we propose the Generalized TAPF (G-TAPF)
formulation that allows for (1) unequal number of agents
and tasks; (2) tasks to have deadlines by which they must be
completed; (3) ordering of groups of tasks to be completed;
and (4) tasks that are composed of a sequence of check-
points that must be visited in a specific order. As different
G-TAPF variants may be applicable in different domains,
we model them using ASP, which allows one to easily cus-
tomize the desired variant by choosing appropriate combi-
nations of rules to enforce. We show that ASP technologies
can easily exploit domain-specific information to improve
its scalability and efficiency. The contributions in this pa-
per thus make a notable jump towards deploying MAPF and
TAPF algorithms in practical applications.

References
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138(1-2):39-54.
Ma, H., and Koenig, S. 2016. Optimal target assignment and
path finding for teams of agents. In AAMAS, 1144-1152.
Nguyen, V.; Obermeier, P.; Son, T. C.; Schaub, T.; and Yeoh,
W. 2017. Generalized target assignment and path finding
using answer set programming. In IJCAI, 1216-1223.

Wurman, P.; D’Andrea, R.; and Mountz, M. 2008. Coor-
dinating hundreds of cooperative, autonomous vehicles in
warehouses. AIMag 29(1):9-20.



