
A-MHA*: Anytime Multi-Heuristic A*

Ramkumar Natarajan,†∗ Muhammad Suhail Saleem,†∗ William Xiao,†

Sandip Aine, Howie Choset, Maxim Likhachev‡ † †
†The Robotics Institute, Carnegie Mellon University

‡ Apple Inc.

Introduction

While designing a single heuristic function that guides the
search well is challenging, it has been shown that multi-
ple heuristics can often dramatically speed up the search
(Helmert 2006). In fact, it is often easy to design heuris-
tics that perform well and correlate with the underlying true
cost-to-go values in certain parts of the search space but
these may not be admissible throughout the domain thereby
affecting the optimality guarantees of the search. Bounded
suboptimal and complete search using several such partially
good but inadmissible heuristics was developed in Multi-
Heuristic A* (MHA*) (Aine et al. 2016). Although MHA*
leverages multiple inadmissible heuristics to potentially gen-
erate a faster suboptimal solution, the original version does
not improve the solution over time.

Real world and real-time planning on the other hand of-
ten need to trade-off solution quality for runtime. To that
end, anytime algorithms have been developed that can gen-
erate a quick suboptimal solution and keep improving it over
time. In this work, we extend MHA* to an anytime version
by borrowing some of the concepts from Anytime Repairing
A* (ARA*) (Likhachev, Gordon, and Thrun 2004) that runs
a series of Weighted A* (WA*) (Pohl 1970) searches, each
with a decreasing weight on heuristics. We ensure that our
precise adaptation of ARA* concepts in the MHA* frame-
work preserves the original suboptimality and completeness
guarantees and enhances MHA* to perform in an anytime
fashion.

Anytime Multi-Heuristic A* (A-MHA*)

Notations: Let s ∈ S denote the finite set of discrete states
over which we search for a path from sstart to sgoal. The
search typically proceeds by expanding states to generate
successors s′ ∈ Succ(s) based on a priority. The current
best cost and the optimal cost to arrive at a state s is de-
noted by g(s) and g∗(s). c(s, s′) denotes the cost between
any two states s and s′ connected by an edge. MHA* in-
corporates a single admissible heuristic h0(s) and multiple
inadmissible heuristics denoted by hi(s), i = 1, ..., N . Let

∗These authors contributed equally.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the inflation of the searches be w1 and let w2 be the in-
flation factor to prioritize inadmissible search. Because of
the anytime nature of the algorithm, the inflation factors
are updated and the found solution is improved over time.
With one admissible heuristic and N inadmissible heuris-
tics, the N + 1 priority queues of expansion are given by
OPEN0 and OPENi, i = 1, ..., N respectively. The pri-
ority of the states in OPENi and OPEN0 are given by
key(s, i) = g(s) +w1 ∗ hi(s). In order to track and prevent
re-expansions within a single search improvement routine,
we have anchor and inadmissible closed lists and an incon-
sistent list denoted as CLOSEDanch, CLOSEDinad, and
INCONS similar to the lists used by ARA*.

Algorithm

The pseudocode of the proposed algorithm is presented in
Algorithm 1. The structure of A-MHA* is similar to ARA*.
The MAIN() function consists of the outer loop from which
the IMPROVEPATH() function is called with the updated
suboptimality bound. IMPROVEPATH() function is a mod-
ified MHA* routine that guarantees w1 ∗ w2 suboptimality
and keeps track of inconsistent states to reuse the search re-
sults during the next iteration.

Properties of A-MHA*

We present two important properties of A-MHA*: (1) The
solution provided by any IMPROVEPATH() call has cost that
is at most w2 ∗ w1 suboptimal (i.e, no worse than w2 ∗ w1

times the cost of an optimal solution), which extends from
the detailed proof presented in the original MHA* paper
(Aine et al. 2016). (2) Within each call of IMPROVEPATH(),
a state is expanded at most twice. This follows from the fact
that a state expanded by a call to EXPAND(S) from anchor
search can never be expanded again, whereas a state ex-
panded by a call to EXPAND(S) from an inadmissible search
can be expanded only by the anchor search.

Experimental Setup, Results and Discussion

We evaluate the performance of A-MHA* on the sliding
tiles puzzle and 3D navigation (x,y,orientation) domains.
We include MHA*, ARA* and Anytime Nonparametric A*
(ANA*) (Van Den Berg et al. 2011) in our comparisons.

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

192

Figure 1: Average suboptimality of solution vs time for 50
instances of 3D planning experiments, Note that the time
axis is in log-scale.

Algorithm 1 Anytime Multi Heuristic A* algorithm
1: procedure KEY(s, i)
2: return g(s) + w1 ∗ hi(s);
3: procedure EXPAND(s, i)
4: Remove s from OPENi ∀ i = 0, 1...N
5: for each s′ in Succ(s)
6: if g(s′) > g(s) + c(s, s′)
7: g(s′) = g(s) + c(s, s′)
8: if s′ in CLOSEDanch

9: Add s′ to INCONS
10: else
11: Insert/Update s′ in OPEN0 with KEY(s′, 0)
12: if s′ not in CLOSEDinad

13: for i = 1 to n
14: if KEY(s′, i) ≤ w2 ∗ KEY(s′, 0)
15: Insert/Update s′ in OPENi with KEY(s′, i)
16: procedure IMPROVEPATH()
17: while f(sgoal) > w2 ∗OPEN0.Min()
18: for i = 1...N
19: if(OPENi.Min() ≤ w2 ∗OPEN0.Min())
20: s = OPENi.T op()
21: EXPAND(s, i) and Insert s in CLOSEDinad

22: else
23: s = OPEN0.T op()
24: EXPAND(s, 0) and Insert s in CLOSEDanch

25: procedure MAIN()
26: w1 = w0

1; w2 = w0
2; g(sstart) = 0; g(sgoal) = ∞;

27: for i = 0...N
28: OPENi = NULL
29: Insert sstart in OPENi with KEY(s, i)
30: while w1 ≥ 1 and w2 ≥ 1
31: CLOSEDanch = CLOSEDinad = NULL
32: INCONS = NULL
33: IMPROVEPATH()
34: Publish current w1 ∗ w2 suboptimal solution
35: if w1 == 1 and w2 == 1
36: return
37: wi = max(wi −Δwi, 1); i = 1, 2
38: Move states from INCONS into OPEN0

39: Copy all states from OPEN0 to OPENi

40: Update the priorities ∀s ∈ OPENi; ∀i = 0..N

3D Path Planning: We plan for a polygonal robot with

Metric A-MHA* ARA* ANA* MHA*

Size 48 63 48 63 48 63 48 63
SR 100 88 75 70 75 44 100 88
Ti 17 9 15 18 42 23 17 9
Tf 42 39 31 29 111 41 17 9
εi 25 25 25 25 2e7 3e7 25 25
εf 7.3 4 8.7 5.1 7.9 3.3 25 25

Table 1: Average statistics for 50 instances of 48 and 63 tile
sliding puzzle: SR - Success Rate; Ti - Time to produce the
first solution; Tf - Time to produce the final solution; εi - Re-
ported Initial suboptimality bound; εf - Reported final sub-
optimality bound.

three degrees of freedom (x,y,orientation) and minimum
turning radius constraints in a 2-D planar environment.
The consistent heuristic common across all the planners
is the Euclidean distance from the goal and the inadmis-
sible heuristics used for MHA* and A-MHA* include an
8-connected Dijkstra search assuming the robot to have
zero size and two other progressive heuristics obtained by
running 8-connected Dijkstra search on a map created by
blocking the narrow passages (passage width ≤ robot size).

Sliding Tiles Puzzle: A widely used consistent heuristic
for this domain is the sum of the Manhattan Distance
(MD) and Linear Conflict (LC). Similar to the original
MHA* paper, the inconsistent heuristics are a weighted
sum of the number of misplaced tiles (MT), MD and LC,
where the weights are randomly generated during execution.

Experimental results presented in Figure 1 and Table 1
strongly favor A-MHA*. This simple algorithm brings to-
gether the benefits of both ARA* and MHA*, thereby maxi-
mizing the performance in terms of both solution quality and
run-time.

References

Aine, S.; Swaminathan, S.; Narayanan, V.; Hwang, V.; and
Likhachev, M. 2016. Multi-heuristic a. The International
Journal of Robotics Research 35(1-3):224–243.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2004. Ara*:
Anytime a* with provable bounds on sub-optimality. In Ad-
vances in neural information processing systems, 767–774.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence 1(3-4):193–204.
Van Den Berg, J.; Shah, R.; Huang, A.; and Goldberg, K.
2011. Anytime nonparametric a. In Twenty-Fifth AAAI Con-
ference on Artificial Intelligence.

193

