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Abstract

This is an extended abstract of a previously published paper at
AAAI 2019 (Ma et al. 2019). We generalize prioritized plan-
ning for Multi-Agent Path Finding from planning with a fixed
total priority ordering of all agents to planning with all pos-
sible partial priority orderings. We present new theoretical
results on its limitations in terms of completeness and opti-
mality. We also present a novel prioritized algorithmic frame-
work and demonstrate state-of-the-art solution qualities and
success rates, often with runtimes similar to those of existing
prioritized algorithms.

Introduction

In Multi-Agent Path Finding (MAPF) (Ma and Koenig
2017), we are given a connected undirected graph G =
(V,E) and M agents {a; | i € [M]} ((M] ={1,...,M}).
Each a; is given a unique start vertex s; € V and a
unique target vertex ¢; € V and either moves to an ad-
jacent vertex or waits at the same vertex at each discrete
time ¢ = 0,...,00. Let m;(¢) denote the vertex occupied
by a; at t. A plan consists of a set of paths, one path
m = (m(0), ..., m(T3), m(T; + 1),...) for each a;, where
m;(0) = s; and 7;(t) = t; for all times ¢t = T, ..., 00. The
arrival time T; of agent a; at t; is the earliest time when it
has reached ¢; and stops moving. A vertex collision is a tuple
(a;,a;,v,t) where a; and a; occupy the same v at the same
t. An edge collision is a tuple (a;, a;,u,v,t) where a; and
a; traverse (u, v) € E in opposite directions at the same ¢. A
solution is a plan that consists of collision-free paths for all
agents. Its quality is measured by the flowtime Zie[ M T;
the sum of the arrival times of all agents.

MAPF arises in many applications, such as for aircraft-
towing vehicles (Morris et al. 2016), warehouse and office
robots (Wurman, D’ Andrea, and Mountz 2008; Veloso et al.
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2015), game characters (Ma et al. 2017b), and other multi-
agent systems (Ma et al. 2017a). MAPF is NP-hard to solve
optimally (Yu and LaValle 2013b; Ma et al. 2016b) and can
be solved with reductions to other well-studied combinato-
rial problems (Surynek 2015; Yu and LaValle 2013a; Erdem
et al. 2013) and dedicated MAPF algorithms (Standley and
Korf 2011; Luna and Bekris 2011; Goldenberg et al. 2014;
Sharon et al. 2013; Wagner and Choset 2015; Sharon et
al. 2015), as described in several surveys (Ma et al. 2016a;
Felner et al. 2017).

Prioritized MAPF algorithms (Silver 2005; Sturtevant and
Buro 2006) use the following simple prioritized-planning
scheme (Erdmann and Lozano-Pérez 1987): Each a; is
given a unique priority and computes, in priority order, a
minimum-cost path from s; to ¢; that avoids collisions with
the (already planned) paths of all agents with higher prior-
ities. Existing (standard) prioritized MAPF algorithms are
often used as parts of MAPF solvers (Velagapudi, Sycara,
and Scerri 2010; Wang and Botea 2011; Cép, Vokrinek, and
Kleiner 2015). However, they use a predefined total prior-
ity ordering of the agents and can thus result in solutions of
bad quality or even fail to find any solutions for solvable
MAPF instances, where a different total priority ordering
could have resulted in solutions of higher quality. In this pa-
per, we thus consider a generalized form of prioritized plan-
ning with all possible total priority orderings. We discuss
the limitations of prioritized planning. We also develop two
prioritized MAPF algorithms, Conflict-Based Search with
Priorities (CBSw/P) and Priority-Based Search (PBS), that
systematically explore “good” priority orderings.

Theoretical Results

We summarize the theoretical results: (1) Some MAPF in-
stances that are solvable are not solvable with prioritized
planning. (2) Some MAPF instances that are solvable with
prioritized planning are only solvable with prioritized plan-
ning for a single total priority ordering. (3) Some MAPF
instances that are solvable with prioritized planning are not
optimally solvable with prioritized planning for any total pri-
ority ordering. (4) Even worse, some MAPF instances that
are optimally solvable with prioritized planning require pri-
oritized planning not only to use the correct total priority or-
dering but also break ties correctly when planning paths for
the agents, which—if done incorrectly—can prevent priori-



tized planning from finding any solution. We refer the reader
to the original paper (Ma et al. 2019) for the detailed theo-
rems and proofs.

Algorithms

Conflict-Based Search with Priorities (CBSw/P) is an adap-
tation of Conflict-Based Search (CBS) (Sharon et al. 2015)
to prioritized planning. It explores the space of all total pri-
ority orderings lazily using a systematic best-first search: It
introduces an ordered pair of agents only when their paths
collide. Priority-Based Search (PBS) explores the space of
all total priority orderings lazily using a systematic depth-
first search: It takes a user-specified partial priority ordering
as input, dynamically adds new ordered pairs of agents to it,
and plans paths that are consistent with the resulting partial
priority ordering. Standard prioritized MAPF algorithms are
special cases of PBS.

We compare CBSw/P and PBS to a state-of-the-art im-
plementation of CBS (Felner et al. 2018) and several PBS
variants that simulate standard prioritized MAPF algorithms
with different total priority orderings on a 2.50 GHz In-
tel Core 15-2450M laptop with 6 GB RAM. We find that
CBSw/P often computes optimal or near-optimal solutions
and is more efficient than CBS. PBS also computes near-
optimal solutions and is much more efficient than CBSw/P.
Moreover, PBS finds solutions for many MAPF instances
where standard prioritized MAPF algorithms cannot and
solves MAPF instances with six hundred agents on a video
game map in 35.18 seconds on average.

We refer the reader to the original paper (Ma et al. 2019)
for a detailed description and theoretical analysis of CBSw/P
and PBS and more experimental insights.
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