
Multi-Agent Path Finding for Large Agents∗

Jiaoyang Li
CS Department

Univ. of Southern California
jiaoyanl@usc.edu

Pavel Surynek
Faculty of Information Technology

Czech Technical University
pavel.surynek@fit.cvut.cz

Ariel Felner
SISE Department

Ben-Gurion University
felner@bgu.ac.il

Hang Ma
T. K. Satish Kumar

Sven Koenig
Univ. of Southern California

Abstract

Multi-Agent Path Finding (MAPF) has been widely studied
in the AI community. For example, Conflict-Based Search
(CBS) is a state-of-the-art MAPF algorithm based on a two-
level tree-search. However, previous MAPF algorithms as-
sume that an agent occupies only a single location at any
given time, e.g., a single cell in a grid. This limits their ap-
plicability in many real-world domains that have geometric
agents in lieu of point agents. In this paper, we formalize
and study MAPF for large agents that considers the shapes
of agents. We present a generalized version of CBS, called
Multi-Constraint CBS (MC-CBS), that adds multiple con-
straints (instead of one constraint) for an agent when it gener-
ates a high-level search node. Experimental results show that
all MC-CBS variants significantly outperform CBS. The best
variant also outperforms EPEA* (a state-of-the-art A*-based
MAPF solver) in all cases and MDD-SAT (a state-of-the-art
reduction-based MAPF solver) in some cases.

Introduction and Problem Definition

In robotics and computer games, one has to find collision-
free paths for multiple agents operating in a common envi-
ronment. This has led to the study of Multi-Agent Path Find-
ing (MAPF) in the AI community, where we are required to
find a path for each agent from its given start vertex to its
given goal vertex on a given graph such that no two agents
collide with each other at any given time. Although previ-
ous MAPF algorithms have found some real-world applica-
tions, they are based on one simplistic assumption that limits
their applicability. This assumption is to ignore the shape of
agents and consider them as point agents, which occupy ex-
actly one point at any time. In reality, agents are geometric
in nature with definite shapes. Therefore, they typically oc-
cupy a set of points at any time. We refer to such agents as
large agents and formally study Multi-Agent Path Finding

∗This paper is a short version of (Li et al. 2019). The research
at the University of Southern California was supported by the Na-
tional Science Foundation (NSF) under grant numbers 1409987,
1724392, 1817189 and 1837779 as well as a gift from Amazon.
The research was also supported by the United States-Israel Bi-
national Science Foundation (BSF) under grant number 2017692
and the Czech Science Foundation (GACR) under grant number
19-17966S.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for Large Agents (LA-MAPF) which takes into considera-
tion the shapes of agents.

We formalize LA-MAPF as follows: We are given an
undirected graph G = (V,E) embedded in a d-dimensional
Euclidean space (usually d = 2, 3). Each vertex v ∈ V is a
point in the Euclidean space that is specified by its coordi-
nates. We are also given a set of k agents {a1 . . . ak} with
unique start and goal vertices, and each agent has a fixed
geometric shape around a reference point that cannot un-
dergo transformations like rotations. We say that an agent is
at a vertex v when its reference point is at vertex v, and we
say that an agent traverses an edge (u, v) when its reference
point moves along edge (u, v). At each discrete timestep t,
an agent can either wait at its current vertex or move to an
adjacent vertex. Both wait and move actions have unit costs
unless the agent terminally waits at its goal vertex.

In MAPF, a conflict between two agents is either a ver-
tex conflict, where two agents are at the same vertex at the
same timestep, or an edge conflict, where two agents traverse
the same edge in opposite directions at the same timestep.
In LA-MAPF, however, agents could collide when they are
in close proximity with each other. Therefore, we general-
ize the definitions of conflicts. We define a vertex conflict
as a five-element tuple 〈ai, aj , u, v, t〉, where the shapes of
ai and aj overlap if ai is at vertex u and aj is at vertex v
at the same timestep t. Similarly, we define an edge conflict
as a seven-element tuple 〈ai, aj , u1, u2, v1, v2, t〉, where the
shapes of ai and aj overlap if ai moves from vertex u1 to u2

and aj moves from vertex v1 to v2 at the same timestep t.
We focus here on resolving vertex conflicts, except for the
experimental section, since edge conflicts can be handled
analogously. Our task is to find a set of conflict-free paths
that move all agents from their start vertices to their goal
vertices with minimum sum of costs of all paths.

Conflict-Based Search (CBS)

CBS (Sharon et al. 2015) is a two-level tree-search algo-
rithm that is complete and optimal for MAPF. Its high level
performs a best-first search on a binary constraint tree (CT).
Each CT node contains a set of constraints, where a con-
straint 〈ai, u, t〉 prohibits agent ai from being at vertex u at
timestep t, and a set of paths for all agents that satisfy all
constraints. The cost of the CT node is the sum of costs of
all paths. The CT root node contains an empty set of con-

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

186

Figure 1: A 4-neighbor 2D grid with square-shaped agents,
where lines represent edges, intersection points represent
vertices, and black cells represent obstacles. The reference
point is the top-left corner of the agent.

straints and a set of individual shortest paths. When the high
level expands a CT node N , it first checks for conflicts in
its paths. If they are conflict-free, then N is a goal node and
CBS returns its paths. Otherwise, the high level resolves a
conflict 〈ai, aj , u, v, t〉 (u = v in MAPF) by splitting N into
two child CT nodes, N1 and N2, that inherit all constraints
and paths from N . The high level also adds a new constraint
〈ai, u, t〉 to N1 and a new constraint 〈aj , v, t〉 to N2 and then
runs a low-level search for both child nodes to find shortest
paths for all agents that satisfy the new set of constraints in
each of them. With two child CT nodes per conflict, CBS
guarantees optimality by exploring both ways of resolving
each conflict.

CBS can be directly adapted to LA-MAPF by considering
generalized conflicts. However, the resulting version of CBS
is very inefficient for large agents. For example, in Figure 1,
a1 tries to move from (3, 0) to (3, 4), and a2 tries to move
from (0, 1) to (3, 1). In the CT root node, both agents follow
their individual shortest paths and have conflicts at timesteps
1, 2 and 3. The drawing is a snapshot that shows their con-
flict at timestep 3. If CBS chooses to resolve this conflict,
then the right child node has a new constraint 〈a2, (3, 1), 3〉.
a2 is forced to wait for one timestep and thus stays at vertex
(2, 1) at timestep 3. However, a2 then still conflicts with a1
at timestep 3 in this child node. The conflict between a1 and
a2 at timestep 3 is therefore not resolved by this split. Al-
though it will be resolved eventually, many intermediate CT
nodes are generated.

Multi-Constraint CBS (MC-CBS)

The above observations motivate the idea of adding multi-
ple constraints in a single CT node expansion. We present
a new algorithm, MC-CBS, which adds multiple constraints
for the same timestep to child nodes in order to resolve mul-
tiple related conflicts in a single CT node expansion, which
resembles lookahead reasoning at the high level and can re-
sult in smaller CTs, thus making the search more efficient.

We say that two constraints for ai and aj respectively are
mutually disjunctive iff any pair of conflict-free paths for ai
and aj satisfies at least one of the two constraints, i.e., there
do not exist two conflict-free paths such that both constraints
are violated. In particular, the constraints that CBS adds to
two child nodes are always mutually disjunctive. We say that
two sets of constraints are mutually disjunctive iff each con-
straint in one set is mutually disjunctive with each constraint
in the other set.

Figure 2: Success rates (= %solved instances) for different
numbers of agents within 5 minutes (left) and for all num-
bers of agents within different runtime limits (right).

When MC-CBS resolves a conflict 〈ai, aj , u, v, t〉 in a CT
node N , it generates two child nodes with N ’s constraint set
and additional constraint sets, C1 and C2, respectively: (1)
C1 and C2 include the core constraints that CBS uses to
resolve the conflict, i.e., 〈ai, u, t〉 ∈ C1 and 〈aj , v, t〉 ∈ C2,
and (2) C1 and C2 are enhanced with other constraints that
ensure that C1 and C2 remain mutually disjunctive.

MC-CBS is complete and optimal (Li et al. 2019). We
present three approaches to choosing such constraint sets:

1. ASYM adds a constraint set of size one to the left child
node that prohibits agent ai from being at its current ver-
tex v at timestep t and a large constraint set to the right
child node that prohibits agent aj from being at any ver-
tex at timestep t where it could collide with ai.

2. SYM chooses a point p in the Euclidean space that is in-
side the overlap area, and then adds one constraint set to
each child node. The constraint set blocks all vertices that
the agent could be at while including p in its shape.

3. MAX tries all pairs of constraint sets that satisfy con-
straints (1) and (2) and then chooses the pair where the
child nodes have the highest possible costs.

Experimental Results

We compare the three MC-CBS variants (i.e., ASYM, SYM
and MAX) with CBS, EPEA*, and MDD-SAT on instances
with square-shaped agents of different sizes randomly cho-
sen from {2.5, 3.5, 4.5}. We used a 4-neighbor grid lak503d
from (Sturtevant 2012). We used 50 instances with randomly
generated start vertices and goal vertices for each number
of agents. Figure 2 presents the results. ASYM always per-
forms slightly worse than SYM, and thus we didn’t plot it
in the figures. But both of them always perform better than
CBS. MAX significantly outperforms all other algorithms in
all cases except when the runtime limit is less than 0.1 s.

References
Li, J.; Surynek, P.; Felner, A.; Ma., H.; Kumar, T. K. S.; and Koenig,
S. 2019. Multi-agent path finding for large agents. In AAAI Con-
ference on Artificial Intelligence.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding. Arti-
ficial Intelligence 219:40–66.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in Games
4(2):144–148.

187

