
Symmetry-Breaking Constraints for
Grid-Based Multi-Agent Path Finding∗

Jiaoyang Li,1 Daniel Harabor,2 Peter J. Stuckey,2 Hang Ma,1 Sven Koenig1

1University of Southern California
2Monash University

jiaoyanl@usc.edu, {daniel.harabor,peter.stuckey}@monash.edu, {hangma,skoenig}@usc.edu

Abstract

We describe a new way of reasoning about symmetric colli-
sions for Multi-Agent Path Finding (MAPF) on 4-neighbor
grids. We also introduce a symmetry-breaking constraint to
resolve these conflicts. This specialized technique allows us
to identify and eliminate, in a single step, all permutations of
two currently assigned but incompatible paths. Each such per-
mutation has exactly the same cost as a current path, and each
one results in a new collision between the same two agents.
We show that the addition of symmetry-breaking techniques
can significantly speed up Conflict-Based Search (CBS), a
popular framework for MAPF.

Introduction
A Multi-Agent Path Finding (MAPF) problem is defined by
a graph G = (V,E) and a set of agents {a1, . . . , am}. Each
agent ai has a start vertex si ∈ V and a goal vertex gi ∈ V .
At each discretized timestep, every agent can either move to
an adjacent vertex or wait at its current vertex. Both move
and wait actions have unit cost unless the agent terminally
waits at its goal vertex, which has zero cost. Our task is to
find a set of conflict-free paths which move all agents from
their start vertices to their goal vertices while minimizing
the sum of their path costs, where a conflict is either a ver-
tex conflict where two agents occupy the same vertex at the
same timestep or an edge conflict where two agents traverse
the same edge in opposite directions at the same timestep.

In this paper, we introduce a new way of reasoning about
symmetric conflicts between two agents for MAPF on 4-
neighbor grids (which are arguably the most common way of
representing the environment for MAPF). Our approach ex-
ploits grid symmetries: equivalences between sets of paths
or path segments which have the same start and goal ver-
tices, the same cost, and which differ only in the order in
which grid actions (up, down, left, right, or wait) appear on
them. Figure 1(a) shows an example. All shortest paths for
the two agents conflict somewhere inside the yellow area.
The optimal strategy here is for one agent to wait for the

∗This paper is a short version of (Li et al. 2019). The research
at the University of Southern California was supported by the Na-
tional Science Foundation (NSF) under grant numbers 1409987,
1724392, 1817189 and 1837779 as well as a gift from Amazon.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Cardinal (b) Semi-cardinal (c) Non-cardinal

Figure 1: Examples of rectangle conflicts. The start and goal
vertices are shown in the figures.

other. We refer to such cases as cardinal rectangle conflicts.
In this paper, we propose efficient algorithms to detect cardi-
nal rectangle conflicts as well as two other types of conflicts,
semi-cardinal rectangle conflicts where one of the agents
has bypasses that does not traverse the yellow area (e.g.,
Figure 1(b)) and non-cardinal rectangle conflicts where both
agents have bypasses (e.g., Figure 1(c)). We also introduce
barrier constraints to CBS to resolve these rectangle con-
flicts in a single step while guaranteeing optimality.

Conflict-Based Search (CBS)
CBS (Sharon et al. 2015) is a two-level optimal MAPF al-
gorithm. At the high level, CBS performs a best-first search
on a binary constraint tree (CT). Each CT node contains
a set of spatio-temporal constraints, where a constraint is
either a vertex constraint 〈ai, v, t〉 that prohibits agent ai
from occupying vertex v at timestep t or an edge con-
straint 〈ai, u, v, t〉 that prohibits agent ai from traversing
edge (u, v) at timestep t. It also contains a set of shortest
paths, one for each agent, that satisfy all constraints. The
cost of a CT node is the sum of the path costs. When CBS ex-
pands a CT node N , it checks for conflicts among its paths.
If there are none, then N is a goal CT node and CBS termi-
nates. Otherwise, CBS chooses a conflict and resolves it by
splitting N into two child CT nodes. In each child CT node,
one agent from the conflict is forbidden to use the contested
vertex or edge by way of an additional constraint. The path
of this agent becomes invalidated and must be replanned by
a low-level search. All other paths remain unchanged. With
two child CT nodes per conflict, CBS guarantees optimality
by exploring both ways of resolving each conflict.

CBS is very inefficient when resolving cardinal rectangle

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

184

Table 1: Number of CT nodes expanded by CBSH on MAPF
instances where 2 agents are involved in one cardinal rectan-
gle conflict. The first column and first row specify the width
and length of the rectangular area.

1 2 3 4 5 6 7 8 9
1 1 1 2 3 4 5 6 7 8
2 3 7 14 26 46 79 133 221
3 22 53 116 239 472 904 1,692
4 142 392 1,016 2,651 6,828 17,747
5 1,015 2,971 8,525 23,733 65,236
6 7,447 24,275 78,002 254,173
7 62,429 222,524 795,197
8 573,004 >1,518,151

conflicts because it has to try many combinations of short-
est paths before realizing that one of the agents has to wait.
To illustrate this issue, we ran CBSH (Felner et al. 2018)
(an advanced version of CBS) on MAPF instances where
two agents are involved in a cardinal rectangle conflict. Sur-
prisingly, the number of expanded CT nodes, as shown in
Table 1, is exponential in the length and width of the rectan-
gular area. For a small 8×9 rectangular area, CBSH expands
already more than 1 million CT nodes and fails to solve the
MAPF instance within 5 minutes. For the other two types
of rectangle conflicts, CBS is also inefficient because it does
not always have a good tie-breaking rule for choosing the
bypasses to avoid the conflict.

Rectangle Reasoning
In this section, we present approaches to efficiently identify
and resolve rectangle conflicts. See Figure 1. We define the
rectangular area as the intersection of the si-gi rectangle
and the sj-gj rectangle, where the sk-gk rectangle (k = i, j)
represents the rectangle whose diagonal corners are vertices
sk and gk. We represent a rectangular area by four spatio-
temporal nodes Rs, Rg , Ri and Rj , where the locations of
Rs and Rg are the corners of the rectangular area closest to
the start and goal vertices, respectively, the locations of Ri

and Rj are the other corners on the opposite borders of Si

and Sj , respectively, and the timestep of each node is the
timestep when an optimal path of agent ai or aj reaches the
location of the node.

Identify rectangle conflicts. By observing the examples
in Figure 1, the three sufficient conditions for a rectangle
conflict are intuitive: (1) the two agents have a vertex con-
flict; (2) both agents follow their Manhattan-optimal paths,
i.e., the cost of each path equals the Manhattan distance from
its start vertex to its goal vertex, and (3) the distances from
each vertex inside the rectangular area to the two start ver-
tices are equal, which can be simplified to the condition that
both agents move in the same direction in both dimensions
(because the two agents have a vertex conflict inside the rect-
angular area and thus the distances from the conflicting ver-
tex to their start vertices are equal).

Resolve rectangle conflicts. We resolve a rectangle con-
flict by giving one agent priority within the rectangular area
and forcing the other agent to leave it later or take a detour.
To integrate this idea into CBS, we introduce the barrier
constraint, B(ak, Rk, Rg) (k = i, j), which is a set of vertex

Figure 2: The success rates over 50 instances on a 20×20
grid (left) and a game map (right). The runtime limit is 5
minutes for each instance.

constraints that prohibits agent ak from occupying any ver-
tex along the border of the rectangular area that is opposite
of its start vertex (i.e., from Rk to Rg) at the timestep when
agent ak would optimally reach the vertex. For instance, for
every example in Figure 1, the two barrier constraints are
B(ai, Ri, Rg) = {〈ai, (2 + n, 4), 3 + n〉|n = 0, 1} and
B(aj , Rj , Rg) = {〈aj , (3, 2 + n), 2 + n〉|n = 0, 1, 2}.
B(ak, Rk, Rg) blocks all possible paths of agent ak that
reach its goal vertex gk via the exit border of the rectangular
area, and thus forces it to wait or take a detour. When resolv-
ing a rectangle conflict, we generate two child CT nodes and
add B(ai, Ri, Rg) to one of them and B(aj , Rj , Rg) to the
other one. For all combinations of paths of agents ai and aj ,
if one path violates B(ai, Ri, Rg) and the other path violates
B(aj , Rj , Rg), then the two paths have one or more vertex
conflicts within the rectangular area. Therefore, the two bar-
rier constraints added to child CT nodes do not block any
conflict-free paths, which guarantees optimality.

Experimental Results
We test our rectangle reasoning techniques on CBSH where
(1) CBSH-CR only considers cardinal rectangle conflicts,
(2) CBSH-R considers all three types of rectangle con-
flicts, and (3) CBSH-RM also considers rectangle conflicts
between path segments (details are provided in (Li et al.
2019)). Figure 2 presents the success rates on a 20×20 grid
and a game map named lak503d from (Sturtevant 2012). All
proposed algorithms beat CBSH. CBSH-RM outperforms
CBSH-R, which in turn outperforms CBSH-CR.

References
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T. K. S.;
and Koenig, S. 2018. Adding heuristics to conflict-based search
for multi-agent path finding. In ICAPS, 83–87.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Kumar, T. K. S.; and
Koenig, S. 2019. Symmetry breaking constraints for grid-based
multi-agent path finding. In AAAI.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding. Arti-
ficial Intelligence 219:40–66.
Sturtevant, N. 2012. Benchmarks for grid-based pathfinding.
Transactions on Computational Intelligence and AI in Games
4(2):144 – 148.

185

