A Case Study on the Importance of Low-Level Algorithmic Details in Domain-Independent Heuristics

Ryo Kuroiwa, Alex Fukunaga

Graduate School of Arts and Sciences The University of Tokyo

In this paper, we show that low-level algorithmic details of domain-independent planning heuristics can have a surprisingly large impact on search performance. As a case study, we consider the well-known FF heuristic (h_{ff}) (Hoffmann and Nebel 2001).

A planning task $P = \langle V, s_0, s_*, A \rangle$, where V is a set of variables, s_0 is the initial state, s_* is the goal states, and A is the set of actions. Each action a has a cost c(a), preconditions (pre(a)), and effects (eff(a)), and each effect e has a effect condition (cond(e)) and a value assignment $(x \leftarrow v)$. A plan for a planning task is an action sequence which makes s_0 transition to $s \in s_*$.

A well-known heuristic for satisficing planning is the FF heuristic (Hoffmann and Nebel 2001). $h_{ff}(s)$ is defined as the cost of a plan for a *relaxed planning task*, where multiple values can be assigned to a variable. As a side effect of computing $h_{ff}(s)$, a subset of applicable actions called "helpful actions" is obtained and exploited by search algorithms (Hoffmann and Nebel 2001; Helmert 2006; Nakhost and Müller 2013). Although the original h_{ff} uses a planning graph to compute a relaxed plan (GRAPHPLAN) (Blum and Furst 1997; Hoffmann and Nebel 2001), Keyder and Geffner 2008 proposed a computation of h_{ff} based on an additive heuristic h_{add} (Bonet and Geffner 2001).

The widely used Fast Downward planning system (FD) (Helmert 2006; Richter and Westphal 2010) uses an h_{add} based implementation. In FD (http://hg.fast-downward. org/), h_{ff} is computed as follows: 1) decompose each action a per each effect e into unary actions u, such that $pre(u) = pre(a) \cup cond(e)$, effect $eff(u) = x \leftarrow v$, and cost c(u) = c(a). 2) if an unary action a is dominated by another action b, i.e. $eff(a) = eff(b) \land pre(b) \subseteq$ $pre(a) \wedge c(b) \leq c(a)$, exclude a, 3) compute h_{add} using Generalized Dijkstra algorithm (Liu, Koenig, and Furcy 2002) which maintains a priority queue, 4) and extract a relaxed plan and helpful actions. In step 3, FD uses an adaptive priority queue, which is a bucket based priority queue at first, but switches to the C++ Standard Library std::priority_queue when the priority of any entry exceeds 100. While tiebreaking of the bucket based priority queue is Last In First Out (LIFO), std::priority_queue is heap based and the ordering is not stable in GCC 5.4 (https://gcc.gnu.org/onlinedocs/gcc-5.4.0/libstdc++/manual/). Although the original h_{ff} extracted helpful actions from the relaxed planning graph, step 4 restricts helpful actions to actions in the relaxed plan.

	GBFS			+PO			MRW		
	B	Н	G	B	Н	G	B	Н	C
elevators	16	17	15	17	19	18	20	20	20
nomystery	10	8	11	10	9	11	10	10	11
parcprinter	20	8	20	20	12	20	20	20	20
pegsol	20	20	20	20	20	20	20	20	2
scanalyzer	17	18	18	18	18	20	17	17	1
sokoban	19	18	19	19	19	19	1	1	
tidybot	16	14	13	15	15	13	17	18	1
woodworking	14	10	14	20	17	20	8	7	2
barman	3	0	3	9	3	17	19	19	2
cavediving	7	7	7	7	7	7	7	7	
childsnack	0	0	0	6	6	3	4	5	
citycar	0	0	0	9	6	4	5	5	
floortile	2	2	2	2	2	2	2	2	
ged	20	20	19	20	20	20	20	20	1:
hiking	19	19	11	19	20	12	18	18	1
maintenance	6	6	7	9	11	7	17	17	11
openstacks	20	20	20	20	20	20	20	20	2
parking	4	7	8	13	10	5	6	0	2
tetris	10	14	16	18	17	19	8	8	1'
thoughtful	8	11	12	14	14	12	20	20	2
transport	0	0	0	10	6	1	20	20	2
visitall	0	20	0	0	20	0	13	16	2
agricola	10	10	10	14	13	10	10	10	1
caldera	10	5	12	4	4	14	5	5	1
caldera-split	2	5	4	4	6	4	2	2	
data-network	4	5	5	11	13	11	10	10	
flashfill	8	8	10	13	14	10	9	9	1
nurikabe	10	13	9	9	10	10	14	14	14
organic-synthesis	3	3	3	3	3	3	3	3	
organic-synthesis-split	8	9	11	8	9	11	4	4	1
settlers	3	3	4	14	14	11	20	17	1
snake	5	5	5	5	5	7	8	11	1
spider	11	11	10	14	14	13	11	12	14
termes	15	14	14	15	14	14	2	2	
total	320	330	332	409	410	388	390	389	43
diff (B,H) (H,G) (G,B)	94	98	68	83	128	109	35	90	8

Table 1: Coverage comparation. diff(a,b) is the number of instances solved by either a or b and not solved by the other.

Comparison of h_{ff} **Implementation Strategies** We evaluated a satisficing planner with 3 implementations of unitcost h_{ff} : GRAPHPLAN (G), an h_{add} based implementation with a bucket based priority queue (B), and an h_{add} based implementation using a heap (H). We evaluated these 3 h_{ff} implementations with 3 search strategies: Lazy Greedy Best First Search (GBFS), GBFS with helpful actions (+PO)

Copyright © 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

		#mii	1		#helpfu	1
	В	Η	G	В	Н	G
woodworking	1	0	17	1.140	1.214	19.933
parking	0	0	20	-	-	-
tetris	0	1	8	1.086	1.174	2.166
visitall	0	0	0	1.217	1.184	1.171
caldera	0	0	12	0.477	0.442	1.440
flashfill	2	4	0	0.720	0.605	0.432

Table 2: #min and #helpful per domains.

(Richter and Helmert 2009), and the Monte-Carlo Random Walk (MRW) algorithm used in Arvand-13 (Nakhost and Müller 2013). All of the algorithms were implemented in C++14 (GCC 5.4). Experiments were run on a machine with 16 cores (Xeon E5-2650 v2 2.60 GHz).For H, we used std::priority_queue, following FD. We use a wall-clock time limit of 30 min, a memory limit of 8 GB, and 34 domains from the satisficing track of IPC-11, IPC-14, and IPC-18 (20 instances/domain). For the domains with overlaps in IPC-11 and IPC-14, the IPC-14 version was used.

Table 1 shows the number of solved instances within resource limits (coverage). In GBFS and +PO, the coverage difference between B and H was >2 instances on parcprinter, woodworking, barman and visitall. In particular, B could not solve any visitall instances, while H solved all the instances. For MRW, large coverage differences between B and H were observed on parking, settlers, and snake.

For all search strategies, coverage using G differed by ≥ 3 from the coverage of h_{add} based implementations in at least 5 domains. The total coverage of +PO with G performed worse than B and H. However, MRW with G solves more than 40 instances compared B and H.

In addition, Table 1 shows a diff(alg1,alg2) metric for each algorithm pair (B vs H, B vs G, H vs G, for GBFS, +PO, and MRW) which counts the number of instances solved by one algorithm but not the other. Although the total coverage of GBFS with B vs H differ only by 10, the diff(B,H) for GBFS is 94. Similarly, although total coverage of +PO with B vs H differ only by 1, diff(B,H) for +PO is 83. *Thus, the choice of priority queue tie-breaking policy causes significantly different search behavior, and the problems which are solved differ significantly depending on the policy.*

While diff(B,H) is <50% smaller than diff(H,G) and diff(B,G) for MRW, diff(B,H) is higher than diff(G,B) in GBFS – surprisingly the tie-breaking of the priority queue, a minor implementation detail of h_{ff} , sometimes has a larger impact than the method used to compute a relaxed plan.

Note that Arvand-13, the previous state-of-the-art MRWbased planner, is built on top of the FD codebase, and uses FD's h_{add} based implementation of h_{ff} . MRW with B and H are competitive with the original Arvand-2013 (https: //github.com/nhootan/Arvand2011) (coverage=360). Using a planning-braph based h_{ff} implementation resulted in a significant performance improvement compared to Arvand-13.

One possible explanation for such a large performance gap is that different h_{ff} variants compute diffrent h-values.

Because *h*-values of h_{ff} are the costs of relaxed plans, lower the *h*-value, the closer the relaxed plan is to the optimal relaxed plan. Table 2 shows the number of instances where the initial *h*-value of any h_{ff} variant is strictly lower than all the others (#min) on 6 domains where MRW with G solved ≥ 3 instances more than B and H. While #min(G) > #min(B) and #min(H) on most of these domains, #min(G) was lower than #min(B) and #min(H) on visitall and flashfill.

Another possible cause of the large performance gap between G vs. B and H is the number of helpful actions. Action choices are biased by helpful actions in MRW, and helpful actions in h_{add} based h_{ff} are more restricted than in the original h_{ff} because of step 2 and 4. Table 2 compares the mean # of helpful actions per state (#helpful) on instances solved by all 3 MRW variants. G generates more helpful actions than others on the domains except for visitall and flashfill.

It is possible that excluding actions in step 2 results in different relaxed plans and helpful actions, and both of these simultaneously affect search performance. We are currently continuing to investigate the cause of the performance gap.

Conclusion While the previous state-of-the-art MRWbased planner used the commonly used h_{add} based h_{ff} implementation (Nakhost and Müller 2013), we have shown that a planning-graph based implementation of h_{ff} yields a surprisingly large performance improvement, resulting in an MRW satisficing planner which is significantly more competitive than MRW using an h_{add} based h_{ff} implementation. Furthermore, we showed that both the choice of relaxed plan computation method as well as the priority queue policy for h_{add} significantly affect which specific instances are solved.

These results show that such seemingly minor "low-level algorithmic details" can have a significant impact on the performance of a heuristic. Although this paper evaluated h_{ff} , similar details may have a significant but overlooked impact in other heuristics (e.g., heuristics which embed or use h_{ff}).

References

Blum, A. L., and Furst, M. L. 1997. Fast planning through planning graph analysis. *Artif. Intell.* 90(1):281 – 300.

Bonet, B., and Geffner, H. 2001. Planning as heuristic search. *Artif. Intell.* 129(1-2):5–33.

Helmert, M. 2006. The fast downward planning system. *JAIR* 26(1):191–246.

Hoffmann, J., and Nebel, B. 2001. The FF Planning System: Fast Plan Generation through Heuristic Search. *JAIR* 14:253–302.

Keyder, E., and Geffner, H. 2008. Heuristics for planning with action costs revisited. In *ECAI*, 588–592.

Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up the calculation of heuristics for heuristic search-based planning. In *AAAI*, 484–491.

Nakhost, H., and Müller, M. 2013. Towards a second generation random walk planner: An experimental exploration. In *IJCAI*, 2336–2342.

Richter, S., and Helmert, M. 2009. Preferred operators and deferred evaluation in satisficing planning. In *ICAPS*.

Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding cost-based anytime planning with landmarks. *JAIR* 39:127– 177.