
A Case Study on the Importance of Low-Level
Algorithmic Details in Domain-Independent Heuristics

Ryo Kuroiwa, Alex Fukunaga
Graduate School of Arts and Sciences

The University of Tokyo

In this paper, we show that low-level algorithmic details of
domain-independent planning heuristics can have a surpris-
ingly large impact on search performance. As a case study,
we consider the well-known FF heuristic (hff ) (Hoffmann
and Nebel 2001).

A planning task P = 〈V, s0, s∗, A〉, where V is a set of
variables, s0 is the initial state, s∗ is the goal states, and
A is the set of actions. Each action a has a cost c(a), pre-
conditions (pre(a)), and effects (eff(a)), and each effect
e has a effect condition (cond(e)) and a value assignment
(x ← v). A plan for a planning task is an action sequence
which makes s0 transition to s ∈ s∗.

A well-known heuristic for satisficing planning is the FF
heuristic (Hoffmann and Nebel 2001). hff (s) is defined as
the cost of a plan for a relaxed planning task, where mul-
tiple values can be assigned to a variable. As a side effect
of computing hff (s), a subset of applicable actions called
“helpful actions” is obtained and exploited by search algo-
rithms (Hoffmann and Nebel 2001; Helmert 2006; Nakhost
and Müller 2013). Although the original hff uses a planning
graph to compute a relaxed plan (GRAPHPLAN) (Blum and
Furst 1997; Hoffmann and Nebel 2001), Keyder and Geffner
2008 proposed a computation of hff based on an additive
heuristic hadd (Bonet and Geffner 2001).

The widely used Fast Downward planning system (FD)
(Helmert 2006; Richter and Westphal 2010) uses an hadd

based implementation. In FD (http://hg.fast-downward.
org/), hff is computed as follows: 1) decompose each ac-
tion a per each effect e into unary actions u, such that
pre(u) = pre(a) ∪ cond(e), effect eff(u) = x ← v,
and cost c(u) = c(a). 2) if an unary action a is domi-
nated by another action b, i.e. eff(a) = eff(b) ∧ pre(b) ⊆
pre(a) ∧ c(b) ≤ c(a), exclude a, 3) compute hadd us-
ing Generalized Dijkstra algorithm (Liu, Koenig, and Furcy
2002) which maintains a priority queue, 4) and extract a re-
laxed plan and helpful actions. In step 3, FD uses an adaptive
priority queue, which is a bucket based priority queue at first,
but switches to the C++ Standard Library std::priority queue
when the priority of any entry exceeds 100. While tie-
breaking of the bucket based priority queue is Last In First

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Out (LIFO), std::priority queue is heap based and the order-
ing is not stable in GCC 5.4 (https://gcc.gnu.org/onlinedocs/
gcc-5.4.0/libstdc++/manual/). Although the original hff ex-
tracted helpful actions from the relaxed planning graph, step
4 restricts helpful actions to actions in the relaxed plan.

GBFS +PO MRW

B H G B H G B H G

elevators 16 17 15 17 19 18 20 20 20
nomystery 10 8 11 10 9 11 10 10 11
parcprinter 20 8 20 20 12 20 20 20 20
pegsol 20 20 20 20 20 20 20 20 20
scanalyzer 17 18 18 18 18 20 17 17 17
sokoban 19 18 19 19 19 19 1 1 1
tidybot 16 14 13 15 15 13 17 18 18
woodworking 14 10 14 20 17 20 8 7 20
barman 3 0 3 9 3 17 19 19 20
cavediving 7 7 7 7 7 7 7 7 7
childsnack 0 0 0 6 6 3 4 5 4
citycar 0 0 0 9 6 4 5 5 6
floortile 2 2 2 2 2 2 2 2 2
ged 20 20 19 20 20 20 20 20 15
hiking 19 19 11 19 20 12 18 18 18
maintenance 6 6 7 9 11 7 17 17 12
openstacks 20 20 20 20 20 20 20 20 20
parking 4 7 8 13 10 5 6 0 20
tetris 10 14 16 18 17 19 8 8 17
thoughtful 8 11 12 14 14 12 20 20 20
transport 0 0 0 10 6 1 20 20 20
visitall 0 20 0 0 20 0 13 16 20
agricola 10 10 10 14 13 10 10 10 10
caldera 10 5 12 4 4 14 5 5 12
caldera-split 2 5 4 4 6 4 2 2 2
data-network 4 5 5 11 13 11 10 10 8
flashfill 8 8 10 13 14 10 9 9 12
nurikabe 10 13 9 9 10 10 14 14 14
organic-synthesis 3 3 3 3 3 3 3 3 3
organic-synthesis-split 8 9 11 8 9 11 4 4 5
settlers 3 3 4 14 14 11 20 17 17
snake 5 5 5 5 5 7 8 11 9
spider 11 11 10 14 14 13 11 12 14
termes 15 14 14 15 14 14 2 2 1

total 320 330 332 409 410 388 390 389 435
diff (B,H) (H,G) (G,B) 94 98 68 83 128 109 35 90 85

Table 1: Coverage comparation. diff(a,b) is the number of
instances solved by either a or b and not solved by the other.

Comparison of hff Implementation Strategies We eval-
uated a satisficing planner with 3 implementations of unit-
cost hff : GRAPHPLAN (G), an hadd based implementa-
tion with a bucket based priority queue (B), and an hadd

based implementation using a heap (H). We evaluated these
3 hff implementations with 3 search strategies: Lazy Greedy
Best First Search (GBFS), GBFS with helpful actions (+PO)

Proceedings of the Twelfth International  
Symposium on Combinatorial Search (SoCS 2019)

180



#min #helpful
B H G B H G

woodworking 1 0 17 1.140 1.214 19.933
parking 0 0 20 - - -
tetris 0 1 8 1.086 1.174 2.166
visitall 0 0 0 1.217 1.184 1.171
caldera 0 0 12 0.477 0.442 1.440
flashfill 2 4 0 0.720 0.605 0.432

Table 2: #min and #helpful per domains.

(Richter and Helmert 2009), and the Monte-Carlo Random
Walk (MRW) algorithm used in Arvand-13 (Nakhost and
Müller 2013). All of the algorithms were implemented in
C++14 (GCC 5.4). Experiments were run on a machine
with 16 cores (Xeon E5-2650 v2 2.60 GHz).For H, we used
std::priority queue, following FD. We use a wall-clock time
limit of 30 min, a memory limit of 8 GB, and 34 domains
from the satisficing track of IPC-11, IPC-14, and IPC-18 (20
instances/domain). For the domains with overlaps in IPC-11
and IPC-14, the IPC-14 version was used.

Table 1 shows the number of solved instances within
resource limits (coverage). In GBFS and +PO, the cover-
age difference between B and H was >2 instances on par-
cprinter, woodworking, barman and visitall. In particular, B
could not solve any visitall instances, while H solved all the
instances. For MRW, large coverage differences between B
and H were observed on parking, settlers, and snake.

For all search strategies, coverage using G differed by ≥3
from the coverage of hadd based implementations in at least
5 domains. The total coverage of +PO with G performed
worse than B and H. However, MRW with G solves more
than 40 instances compared B and H.

In addition, Table 1 shows a diff(alg1,alg2) metric for
each algorithm pair (B vs H, B vs G, H vs G, for GBFS, +PO,
and MRW) which counts the number of instances solved by
one algorithm but not the other. Although the total coverage
of GBFS with B vs H differ only by 10, the diff(B,H) for
GBFS is 94. Similarly, although total coverage of +PO with
B vs H differ only by 1, diff(B,H) for +PO is 83. Thus, the
choice of priority queue tie-breaking policy causes signifi-
cantly different search behavior, and the problems which are
solved differ significantly depending on the policy.

While diff(B,H) is <50%smaller than diff(H,G) and
diff(B,G) for MRW, diff(B,H) is higher than diff(G,B) in
GBFS – surprisingly the tie-breaking of the priority queue, a
minor implementation detail of hff , sometimes has a larger
impact than the method used to compute a relaxed plan.

Note that Arvand-13, the previous state-of-the-art MRW-
based planner, is built on top of the FD codebase, and uses
FD’s hadd based implementation of hff . MRW with B and
H are competitive with the original Arvand-2013 (https:
//github.com/nhootan/Arvand2011) (coverage=360). Using
a planning-braph based hff implementation resulted in a
significant performance improvement compared to Arvand-
13.

One possible explanation for such a large performance
gap is that different hff variants compute diffrent h-values.

Because h-values of hff are the costs of relaxed plans, lower
the h-value, the closer the relaxed plan is to the optimal re-
laxed plan. Table 2 shows the number of instances where the
initial h-value of any hff variant is strictly lower than all the
others (#min) on 6 domains where MRW with G solved ≥3
instances more than B and H. While #min(G) > #min(B)
and #min(H) on most of these domains, #min(G) was lower
than #min(B) and #min(H) on visitall and flashfill.

Another possible cause of the large performance gap be-
tween G vs. B and H is the number of helpful actions. Action
choices are biased by helpful actions in MRW, and helpful
actions in hadd based hff are more restricted than in the orig-
inal hff because of step 2 and 4. Table 2 compares the mean
# of helpful actions per state (#helpful) on instances solved
by all 3 MRW variants. G generates more helpful actions
than others on the domains except for visitall and flashfill.

It is possible that excluding actions in step 2 results in
different relaxed plans and helpful actions, and both of these
simultaneously affect search performance. We are currently
continuing to investigate the cause of the performance gap.

Conclusion While the previous state-of-the-art MRW-
based planner used the commonly used hadd based hff im-
plementation (Nakhost and Müller 2013), we have shown
that a planning-graph based implementation of hff yields a
surprisingly large performance improvement, resulting in an
MRW satisficing planner which is significantly more com-
petitive than MRW using an hadd based hff implementation.
Furthermore, we showed that both the choice of relaxed plan
computation method as well as the priority queue policy for
hadd significantly affect which specific instances are solved.

These results show that such seemingly minor “low-level
algorithmic details” can have a significant impact on the per-
formance of a heuristic. Although this paper evaluated hff ,
similar details may have a significant but overlooked impact
in other heuristics (e.g., heuristics which embed or use hff ).

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through plan-
ning graph analysis. Artif. Intell. 90(1):281 – 300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artif. Intell. 129(1-2):5–33.
Helmert, M. 2006. The fast downward planning system. JAIR
26(1):191–246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System: Fast
Plan Generation through Heuristic Search. JAIR 14:253–302.
Keyder, E., and Geffner, H. 2008. Heuristics for planning with
action costs revisited. In ECAI, 588–592.
Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up the calcu-
lation of heuristics for heuristic search-based planning. In AAAI,
484–491.
Nakhost, H., and Müller, M. 2013. Towards a second generation
random walk planner: An experimental exploration. In IJCAI,
2336–2342.
Richter, S., and Helmert, M. 2009. Preferred operators and de-
ferred evaluation in satisficing planning. In ICAPS.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guid-
ing cost-based anytime planning with landmarks. JAIR 39:127–
177.

181


