Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

Compiling Cost-Optimal Multi-Agent Pathfinding to ASP

Rodrigo N. Gémez,! Carlos Hernandez,” Jorge A. Baier'*
! Departamento de Ciencia de la Computacién, Pontificia Universidad Catélica de Chile, Santiago, Chile
2 Departamento de Ciencias de la Ingenieria, Universidad Andrés Bello, Santiago, Chile
3 Instituto Milenio Fundamentos de los Datos, Chile

Introduction

Multi-Agent Pathfinding (MAPF) over grids is the prob-
lem of finding n non-conflicting paths that lead n agents
from a given initial cell to a given goal cell. Sum-of-costs-
optimal MAPF, or simply cost-optimal MAPF, in addi-
tion, minimizes the total number of actions performed by
each agent before stopping at the goal. Being a combina-
torial problem in nature, a number of compilations from
MAPF to Satisfiability (SAT) (Surynek et al. 2016) and
Answer Set Programming (ASP) exist (Erdem et al. 2013;
Gebser et al. 2018). Here we propose and evaluate a new
compilation of MAPF over grids to ASP. Unlike existing
compilations we are aware of, both to SAT and to ASP, our
encoding is the first that produces a number of clauses that
is linear on the number of agents. In addition, the clauses
that allow representing the optimization objective are also
efficiently written, and do not depend on the size of the grid.
Like makespan-optimal approaches, our algorithm searches
for cost-optimal solutions with increasing makespan. When
a solution is found a provably correct upper bound on the
maximum makespan at which a true cost-optimal solution
exists is computed, and the solver is rerun once more.

Answer-Set Programming

Answer-set programming (ASP) (Lifschitz 2008) is a logic-
based framework for knowledge reasoning and constraint
optimization. Optimization problems are modeled with an
ASP program over a set of atoms P, such that a model of
the program, which is a subset of P, encodes an optimal
solution. An ASP program can be viewed as composed by
a set of rules, a set of constraints, and optimization state-
ments. Each rule specifies under which conditions certain
atoms should become part of the model. In our compilation,
we use two types of rules. The first type, basic rules, that
have the form p < B, where p € P and B C P, which in-
tuitively specify that when all atoms in B are part of a model,
so is p. The second type, henceforth referred to as singleton
rules, have the form 1 = |A| «+ B, where A, B C P, and
specify that whenever B is contained in the model, only one
element of A should be. Constraints of the form < C, where
C C P, express C' cannot be contained in a model. Finally

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

174

an optimization statement, of the form min A (resp. max A)
instructs the solver to minimize (resp. maximize) the num-
ber of atoms in A that appear in the model.

From MAPF to ASP

Like compilations of planning to satisfiability, we use atoms
of the form at(a, x,y,t) to specify that an agent a is at cell
(z,y) at time instant t, and our encoding considers instances
of these atoms for ¢t € {0, ..., T}, where T is the makespan
of the solution sought. Atoms of the form exec(a,m,t)
specify that agent a executes m at time ¢.

Effects of moves To encode the effect of agent a performing
move m we use a basic rules of the form at(a, z,y,t+1) +
at(a,z’,y',t), exec(a, m,t)U B, where B specifies the way
(z,y) and (2, ') are related depending on m.

Parallel move execution To encode that each agent per-
forms exactly one move at each time instant, we use single-
ton rules, expressing that set {exec(a, m,t) : m € Moves}
has cardinality 1 for each agent a and each time instant ¢.
Conflict avoidance Here we want to express that the paths
do not have conflicts. We need to express that (1) no pair
of different agents are ever at the same cell and (2) there is
no pair of adjacent agents that swap cells after performing a
single (parallel) move. We do this by adding constraints to
the program. We experimented with two approaches.
Quadratic conflict encoding. The first approach is similar
to what is done in MDD-SAT (Surynek et al. 2016) and
ASPRILO (Gebser et al. 2018). We write the constraints
+ on(a,z,y,t),on(d’,x,y,t), for every pair of different
agents (a,a’), every time instant ¢, and every grid cell (z,y).
Similarly, we write constraints for disallowing swaps; these
are omitted for space, but we need one for each pair of dif-
ferent agents. This yields a representation that is quadratic
on the number of agents, and linear on the size of the map.
Linear conflict encoding. Here we introduce atoms of the
form rt(z,y,t) to specify that the edge between (z,y) and
(x+1,y) is traversed by some agent at time ¢. lt(x + 1, y, t),
on the other hand, represents that an agent moved from
(r + 1,y) to (x,y) a time ¢. In addition, atom st(z,y,1t)
represents some agent at (x, y) at time ¢ performed a wait ac-
tion at ¢. The dynamics of these predicates are defined using
basic rules like lt(x, y, t) < exec(a,right,t), on(a, x,y,t)
for every agent a, cell (z,y), and time instant ¢. Their def-
inition is thus linear in the number of agents and the size

8x8 success rate 8x8 solved instances vs time

1.0
o /r
0.9
m 120
% 0.8 £ 100
I 8
ﬁ‘” E 80
E —— ASP-basic T e —— ASP-basic
3 %81 —— ASP-indep 2 w0 —— ASP-indep
—— ASP-lin-indep 0 —— ASP-lin-indep
%1 — icBs-h 2 — ICBS-h
—— MDD-SAT —— MDD-SAT
0.4 0
4 6 8 10 12 14 16 18 0 4 6
Num agents Time (s)

0.8

°
>

Success rate
°
=

0.2

0.0

20x20 success rate 20x20 solved instances vs time

160

S
5
S

100

—— ASP-basic —— ASP-basic

Solved instance:

—— ASP-indep ——— ASP-indep

—— ASP-lin-indep “° —— ASP-lin-indep

— ICBS-h 20 — ICBS-h

—— MDD-SAT . —— MDD-SAT

20 25 30 35 40 45 50 o 50 100 150 200 250 300
Num agents Time (s)

Figure 1: Success rate and number of instances solved versus time on 8 x 8 and 20 x 20 grids.

of the grid. Finally, for swaps, we express constraints like
— rt(x,y,t),lr(x+1,y,t) for every (x,y) in the grid, and
time instant ¢. The resulting number of constraints and rules
is linear in the size of the map.

Optimization To find a cost-optimal solution, we need to
encode the minimization of the number of actions executed
by the agents. We tried with two different encodings.
Grid-dependent penalty. This encoding is similar to the ap-
proach used in MDD-SAT: the idea to minimize the actions
performed by the agent at each cell. Specifically there is
an atom cost(a,t,1) which specifies that agent a has per-
formed an action at time ¢. To define this atom, we need to
specify three rule schemas. One of them is cost(a,t,1) <
on(a,x,y,t),notgoal(a, z,y), which establishes that mov-
ing the agent from a cell that is not the goal is penalized
by one unit. There are three more rule types that we omit
for space. The resulting number of rules and constraints
grows linearly with the size of the grid and the number of
agents. Finally, via an optimization statement, we minimize
the number of atoms of the form cost(a, t, 1) in the model.
Grid-independent encoding. Here we maximize the slack
between the makespan 7' and the time instant at which an
agent has stopped at the goal. We define atoms of the form
at_goal _back(a,t) which specify that between time instants
t and T agent a is at the goal. The rule defining these atoms
ensures that no action other than wait has been performed
between ¢ and 7', without making reference to the cells int
the grid, resulting in an encoding that does not depend on
the grid, and thus is linear in the number of agents.
Achieving the goal Via a constraint, we specify that no
agent is away from its goal at time 7.

Obtaining an optimal solution Let 7j, and Cj be, respec-
tively, the makespan and cost of the solution that is obtained
by solving the problem independently for each agent, ignor-
ing all others. To obtain an optimal solution we iterate from
T = Tp incrementing 7' by one until a solution is found.
Now let Tj and Cj be, respectively, the makespan and cost
of the first solution found. Then we run the solver for one
last time with makespan 17 + C; — 1 — Cp, which we can
prove will return an optimal solution.

Empirical Evaluation

The objective of our preliminary evaluation was to evaluate
combinations of our encodings and compare them to pub-

175

licly available search-based solvers as well as MDD-SAT
(Surynek 2014) (enc=mdd), on congested grids. We ran two
state-of-the-art search algorithms: EPEA* (Goldenberg et al.
2014), and ICBS-h (Felner et al. 2018), but decided just to
report on the latter, since it was the best performing.

We used Clingo 5.3 as the underlying ASP solver. Clingo
was run with 4 threads in parallel-mode, and using usc as the
optimization strategy. Experiments were run on a 3.40GHz
Intel Core 15-3570K computer with 8GB of memory. We set
a runtime limit of 5 minutes for all the problems.

We experimented on 8 x 8 and 20 x 20 randomly gener-
ated problems with 10% obstacles. For 8 x 8 (resp. 20 x 20)
we generate 150 (resp. 160) problems with the number
of agents in {4,...,18} (resp. {20,22,...,50}). Success
rates, and number of problems solved versus time are shown
in Figure 1, where ASP-basic is a basic encoding that uses
quadratic conflict resolution and grid dependent penalties.
ASP-indep uses quadratic conflict resolution and grid inde-
pendent penalties. Finally, ASP-lin-indep uses linear conflict
resolution and grid independent penalties. We conclude that
in congested grids, ASP-lin-indep is superior to both search-
based the other compilation-based approaches.

References

Erdem, E.; Kisa, D. G.; Oztok, U.; and Schiiller, P. 2013. A general
formal framework for pathfinding problems with multiple agents.
In AAAI. AAAI Press.

Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T. K. S.;
and Koenig, S. 2018. Adding heuristics to conflict-based search
for multi-agent path finding. In /CAPS, 83-87.

Gebser, M.; Obermeier, P.; Otto, T.; Schaub, T.; Sabuncu, O.;
Nguyen, V.; and Son, T. C. 2018. Experimenting with robotic
intra-logistics domains. Theory and Practice of Logic Program-
ming 18(3-4):502-519.

Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant,
N. R.; Holte, R. C.; and Schaeffer, J. 2014. Enhanced partial expan-
sion A*. Journal of Artificial Intelligence Research 50:141-187.
Lifschitz, V. 2008. What is answer set programming? In AAAL,
1594-1597.

Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016. Efficient
SAT approach to multi-agent path finding under the sum of costs
objective. In ECAI, 810-818. 10S Press.

Surynek, P. 2014. Compact representations of cooperative path-
finding as SAT based on matchings in bipartite graphs. In /CTAI,
875-882. IEEE Computer Society.

