
Improved Safe Real-Time Heuristic Search

Bence Cserna, Kevin C. Gall, Wheeler Ruml
Department of Computer Science

University of New Hampshire, USA
Durham, NH, 03824, USA

bence at cs.unh.edu, kcg245 at gmail.com, ruml at cs.unh.edu

Introduction

A fundamental concern in real-time planning is the presence
of dead-ends in the state space, from which no goal is reach-
able. Providing real-time heuristic search algorithms that are
complete in domains with dead-end states is a challenging
problem. Recently, the SafeRTS algorithm was proposed for
searching in such spaces (Cserna et al. 2018). SafeRTS ex-
ploits a user-provided predicate to identify safe states, from
which a goal is likely reachable, and attempts to maintain a
backup plan for reaching a safe state at all times.

This extended abstract summarizes our recent work in
safe real-time search (Cserna, Gall, and Ruml 2019), in
which we study the SafeRTS approach, identify certain
properties of its behavior, and design an improved frame-
work for safe real-time search. In addition, we prove that
the new approach performs at least as well as SafeRTS and
present experimental results showing that its promise is ful-
filled in practice.

Cserna et al. (2018) introduce the notion of safety as a
way of evaluating which states are less likely to lead to dead-
ends, they call these safe nodes. SafeRTS divides the avail-
able time between searches optimizing the independent ob-
jectives of safety and finding the goal. This technique for
proving safety involves alternating, potentially many times
in a search iteration, between expanding the frontier and
proving safety. We will argue below that this technique is
inherently inefficient.

Improving Safe Real-time Search

We first briefly highlight two deficiencies of SafeRTS.
SafeRTS attempts to prove that some of the nodes in its lo-

cal search space (LSS) are safe by initiating a speedy search
(Burns, Ruml, and Do 2013) that prioritizes nodes with low
safety distance. Safety distance is a lower bound on the
number of nodes between a node and a safe node. There
are 3 possible outcomes of a safety proof. It can be non-
conclusive, it can prove that a node is safe or show that it is
a dead-end. SafeRTS only utilizes the results when the node
is proven to be safe. We propose to cache the information
of which nodes are dead ends or predecessors of paths that
exclusively lead to dead ends so that neither safety nor goal

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

searches will re-expand them. Empirically, this optimization
lead to 0.5 – 2.5% savings on expansions in our experiments
(Cserna, Gall, and Ruml 2019).

SafeRTS interleaves exploration and safety proofs dur-
ing its planning phase. As a direct consequence, it attempts
safety proofs on nodes that become internal to the LSS by
the end of the search iteration. As shown in Cserna, Gall, and
Ruml (2019), it would be equally or less difficult to achieve
the same or better safety coverage by doing safety proofs af-
ter all the LSS expansions. SafeRTS has an anytime behavior
but does not effectively utilize the real-time bound given.

A Real-time Framework for Safety

We now summarize the main contribution of Cserna, Gall,
and Ruml (2019): a general scheme called Real-time Frame-
work for Safety (RTFS). RTFS composes an algorithm from
four elements: a parameter that determines the ratio between
goal- and safety-oriented search, and three main functions:
an exploration function, a safe target selection function, and
a proof allocation function.

RTFS exploits the real-time bound of the problem to pre-
allocate the time to spend on exploration and safety proofs
by taking an exploration ratio as an input parameter. A
higher value allows for more aggressive exploration, but de-
creases the likelihood of completing any safety proofs. The
appropriate value should reflect the total available time per
iteration and the difficulty of proving that a node is safe in a
given domain.

The exploration function defines the way the algorithm
uses the expansion budget to build the local search space.
A trivial example of such a function is A*, but any explo-
ration method that is capable of constructing a search tree
could be used, such as wA* (Pohl 1970; Rivera, Baier, and
Hernández 2015), GBFS (Pearl 1984), Beam search (Russell
and Norvig 2010), and Speedy (Burns, Ruml, and Do 2013).
Using an exploration method that leads to a narrow and deep
tree makes each safety proof more consequential as upon a
successful proof every ancestor of the node can be marked
safe.

Given a search tree, a target selection function, and an
expansion budget, the safety proof allocation strategy dis-
tributes the given budget among the frontier nodes of the tree
to prove their safety. It allocates resources based on the or-
dering provided by the target selection function. This func-

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

172

tion is highly non-trivial.
Given a search tree in which the safe and dead-end nodes

are marked, the target selection function selects a node that
the agent should commit towards. Cserna et al. (2018) de-
scribed multiple examples for such target selection strate-
gies.

RTFS first constructs the full local search space (LSS)
using the exploration function, then carries out the safety
proofs according to the safety proof allocation function, and
commits to the target selected by the target selection func-
tion. Deferring the safety proofs after the construction of the
LSS allows RTFS to make a more informed allocation of
the available time, based on an evolved LSS. Thus, RTFS is
likely to prove more promising nodes than SafeRTS and to
avoid redundant work in safety proofs.

The learning and safety propagation is identical to those
in SafeRTS with the addition of dead-end propagation that
removes all nodes from the local search tree that were found
to be unsafe or whose successors are all unsafe.

Empirical Evaluation

To ascertain the performance gain of RTFS, we create a con-
figuration RTFS-0 with target selection and safety proof al-
location functions that mimic SafeRTS. SafeRTS allocates
at least 50% of its expansions towards the construction of
the LSS, hence we set the exploration ratio of RTFS-0 to 0.5.
Though both algorithms select the node on the open list with
the lowest f value at the time the proof is attempted, RTFS-0
differs from SafeRTS as it only attempts safety proofs after
expanding the LSS. As such, its proofs are only limited by
the iteration bound. If a target node is proven to be an im-
plicit dead-end, RTFS-0 removes it and all other discovered
dead-end nodes from the graph, then attempts to prove the
next best node on the open list.

In our experiments we include two additional oracles, A*
and Safe-LSS-LRTA*, to provide reference points. A* is ex-
ecuted offline and its execution time is not included in its
GAT. This serves as a lower bound on the GAT and an up-
per bound on the velocity. Safe-LSS-LRTA* is a version of
LSS-LRTA* that has access to an ideal dead-end detector
and thus only considers nodes that are safe. This offers the
behavior of an agent-centered real-time search method that
only has to focus on reaching the goal.

Real-time planning algorithms construct a solution itera-
tively and start to move the agent immediately after the first
completed iteration. In the chain of decisions, the starting
point of each decision is the result of all prior decisions. We
argue that it is important for benchmark problems to bal-
ance the impact of each decision on the overall GAT. As
an illustration of how to reduce the long term impact of ac-
tions in benchmark domains, we introduce a new benchmark
domain called Airspace. One of the key principles behind
Airspace is to avoid allowing any single decision to have
an outsized effect on a planner’s overall performance. Ad-
ditionally, Airspace guarantees that the agent will not visit
a state more than once, thus it eliminates scrubbing (Sturte-
vant and Bulitko 2016), focusing the benchmark on explo-
ration and safety rather than on learning.

20 40 60 80 100
Expansion Count per Iteration

4

6

8

Av
er

ag
e

Ve
lo

ci
ty

RTFS-0
Safe-LSS-LRTA*
SafeRTS

Figure 1: Average velocity on the Airspace domain.

We discovered multiple undesirable phenomena in the
commonly used racetrack and traffic domains, thus this sum-
mary of our empirical evaluation focuses on the Airspace
domain. In the Airspace domain the velocity of the agent di-
rectly corresponds to the GAT, thus it is used as the primary
benchmark. Figure 1 shows the convergence of methods to-
wards the oracle real-time search, and the average velocity
shows a clear increasing trend as the time available per it-
eration increases. The maximum achievable velocity by A*
was 13. RTFS-0 has faster average velocity and it closes the
gap faster than SafeRTS.

Additional Results

For the detailed description of the RTFS method, the
Airspace domain, the dead-end propagation, and for defi-
nitions, proofs, additional results and a discussion of bench-
mark domains please see Cserna, Gall, and Ruml (2019).

References

Burns, E.; Ruml, W.; and Do, M. B. 2013. Heuristic search
when time matters. Journal of Artificial Intelligence Re-
search 47:697–740.
Cserna, B.; Doyle, W. J.; Ramsdell, J. S.; and Ruml, W.
2018. Avoiding dead ends in real-time heuristic search. In
Proceedings of the Thirty-Second AAAI Conference on Arti-
ficial Intelligence (AAAI-18).
Cserna, B.; Gall, K. C.; and Ruml, W. 2019. Improved safe
real-time heuristic search. arXiv.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1:193–204.
Rivera, N.; Baier, J. A.; and Hernández, C. 2015. Incor-
porating weights into real-time heuristic search. Artificial
Intelligence 225:1 – 23.
Russell, S., and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Prentice Hall, third edition.
Sturtevant, N. R., and Bulitko, V. 2016. Scrubbing during
learning in real-time heuristic search. Journal of Artificial
Intelligence Research 57:307–343.

173

