
An Improved Algorithm for
Optimal Coalition Structure Generation

Narayan Changder, Samir Aknine, Animesh Dutta
Department of Computer Science and Engineering, NIT Durgapur, India, narayan.changder@gmail.com

LIRIS Laboratory Claude Bernard University, Lyon 1, France, samir.aknine@univ-lyon1.fr
Department of Computer Science and Engineering, NIT Durgapur, India,animeshnit@gmail.com

Abstract

The Coalition Structure Generation (CSG) problem is a par-
titioning of a set of agents into exhaustive and disjoint coali-
tions to maximize social welfare. The fastest exact algorithm
to solve the CSG problem is ODP-IP (Michalak et al. 2016).
In this paper, we propose a modified version of IDP (Rahwan
and Jennings 2008) (named MIDP) and an improved version
of IP (Rahwan et al. 2007) (named IIP). Based on these two
improved algorithms, we develop a hybrid version (MIDP-
IIP) to solve the CSG problem. After a description of the new
algorithm MIDP-IIP, the results of the experimental compar-
ison against ODP-IP are provided. Our analysis shows that
MIDP-IIP performs fewer operations than ODP-IP. In addi-
tion, MIDP-IIP reduced significantly many problem instances
running times (11% to 37%).

The optimal CSG problem formulation

Coalition formation can be applied to many real-world prob-
lems such as task allocation, airport slot allocation, and so-
cial network analysis. ODP-IP (Michalak et al. 2016) algo-
rithm is the fastest exact algorithm for the CSG to date in
practice. Given a set of n agents A = {a1, a2, . . . , an}, a
coalition Ci is a non-empty subset of A. A coalition struc-
ture (CS) over A is a partitioning of A into a set of dis-
joint coalitions {C1, C2, . . . , Ck}, where k ∈ {1, . . . , n} is
called the size of the coalition structure i.e. k = |CS|. In
other words, {C1, C2, . . . , Ck} satisfies the following con-
straints:1) Ci, Cj �= ∅ , i, j ∈ {1, 2, . . . , k}. 2) Ci ∩ Cj = ∅,

for all i �= j. and 3)
k⋃

i=1

Ci = A. The value of any coali-

tion structure CS is defined by v(CS) =
∑

Ci∈CS v(Ci).
The optimal solution of CSG is an optimal coalition struc-
ture CS∗ ∈ ΠA. The set of all coalition structures over A is
denoted as ΠA. Thus, CS∗ = arg maxCS∈ΠAv(CS).

MIDP-IIP algorithm

The MIDP-IIP algorithm is a hybrid version of MIDP and
IIP algorithms. Before further discussion on MIDP-IIP, we
explain MIDP algorithm. Let, Pt be the partition table,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

[3, 7]

[2, 2, 6]

[1, 1, 4, 4]

[1, 1, 2, 2, 4]

[1, 1, 1, 1, 3, 3]

[1, 1, 1, 1, 1, 2, 3]

[2, 8][1, 9] [4, 6] [5, 5]

[1, 3, 6] [1, 4, 5] [2, 3, 5] [2, 4, 4][1, 2, 7][1, 1, 8] [3, 3, 4]

[1, 2, 3, 4] [2, 2, 2, 4] [1, 3, 3, 3] [2, 2, 3, 3][1, 2, 2, 5][1, 1, 3, 5][1, 1, 2, 6][1, 1, 1, 7]

[1, 1, 2, 3, 3] [1, 2, 2, 2, 3] [2, 2, 2, 2, 2][1, 1, 1, 3, 4][1, 1, 1, 2, 5][1, 1, 1, 1, 6]

[1, 1, 1, 2, 2, 3] [1, 1, 2, 2, 2, 2][1, 1, 1, 1, 2, 4][1, 1, 1, 1, 1, 5]

[1, 1, 1, 1, 2, 2, 2][1, 1, 1, 1, 1, 1, 4]

[1, 1, 1, 1, 1, 1, 1, 3] [1, 1, 1, 1, 1, 1, 2, 2]

[1, 1, 1, 1, 1, 1, 1, 1, 2]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[10]

Figure 1: Searched subspaces after evaluation of all coali-
tions of size 4, given 10 agents. Gray colored subspaces are
fully searched by MIDP, whereas white colored subspaces
are not yet searched.

Pt(C) stores one optimal partition of each coalition C and
Vt be the optimal value table, Vt(C) stores the optimal value
of the coalition C. MIDP produces two tables Pt and Vt us-
ing the below recursion (cf. equation 1).

Let C′′ =
{
C′|C′ ⊂ C and 0 ≤ |C′| ≤ |C|

2

}
, table Vt for

each coalition C is constructed as follows:

Vt(C) =
{
v(C) if |C| = 1

arg maxC′∈C′′{Vt(C′) + Vt(C \ C′)} otherwise
(1)

Now, we explain how the IIP algorithm works. The IIP al-
gorithm divides the whole search space of the CSG prob-
lem into different subspaces (cf. Figure 1). It is possible
to compute an upper bound and a lower bound on the val-

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

166

ues of all the coalition structures in each subspace. IIP
sorts all these subspaces according to the upper bound val-
ues and starts searching them one by one until all the sub-
spaces are searched. IIP algorithm searches any subspace in
depth-first manner. Let’s say IIP is now searching a subspace
[i1, i2, . . . , ik]. IIP algorithm first iterates over all coalitions
Ci1 of size i1. Next for each coalition Cx1

∈ Ci1 , IIP iterates
over all coalitions Cx2

∈ Ci2 of size i2 that does not overlap
with Cx1

. Similarly, IIP iterates over all coalitions Cx3
∈ Ci3

of size i3 that does not overlap with the coalition Cx1
∪ Cx2

,
and so on. This process is repeated until the last coalition of
size ik is picked. Using this process all the coalition struc-
tures in the subspace [i1, i2, . . . , ik] are searched. After gen-
erating d coalitions Cx1 ∈ Ci1 , . . . , Cxd

∈ Cid , and before it-
erating over the next feasible coalitions of size d+1, . . . , k,
IIP checks the inequality 2.

Pt({Cd}) �= {Cd} (2)

If the inequality 2 holds, then all the coalition structures
composed of the coalitions C1, C2, . . . , Cd can be skipped
during IIP’s search, because the coalition Cd cannot be part
of the optimal coalition structure as the coalition Cd is stored
in the optimal partition table Pt in two disjoint coalitions.
Otherwise IIP applies the inequalities 3, 4, and 5.

Let V (CS∗∗) denotes the best coalition structure found
by the IIP algorithm at any point in time. If the inequal-
ity 3 holds, then all coalition structures composed of coali-
tions C1, C2, . . . , Cd can be skipped because the coalition
structures containing coalitions C1, C2, . . . , Cd in the sub-
space [i1, i2, . . . , ik] will always generate a coalition struc-
ture value less than V (CS∗∗) and cannot be part of the opti-
mal coalition structure.

d∑
i=1

v(Ci) +
k∑

i=d+1

Maxi < V (CS∗∗) (3)

d∑
i=1

w(Ci) >
d∑

j=1

v(Cj) (4)

w(Cd) > v(Cd) (5)

If the inequality 4 holds then any coalition structure contain-
ing the coalition {C1, . . . , Cd} cannot be the optimal coali-
tion structure in the subspace [i1, i2, . . . , ik] and all such
coalition structures can be skipped. Similarly, if the inequal-
ity 5 holds then the coalition {Cd} is not part of any optimal
coalition structure in the subspace [i1, i2, . . . , ik]. Hence, ev-
ery coalition structure containing the coalition {C1, . . . , Cd}
can be skipped during IIP’s search. To use the strength of
MIDP in IIP’s search, we use the same table w (more details
are provided in (Michalak et al. 2016).) used by IIP and
MIDP.

Experimental evaluation

We empirically evaluated the MIDP-IIP algorithm and
benchmarked it against ODP-IP. We compared the perfor-
mances of both algorithms given different numbers of agents
(5 to 27). For ODP-IP, we used the code provided by the

Time in seconds
Distribution ODP-IP MIDP-IIP Difference

time (t1) time (t2) t1 − t2
Agent-based uniform 4126 3677 449
Agent-based normal 3269 2904 365
Chi-square 1030 632 398
NDCS 470 300 170
Exponential 409 300 109
Gamma 401 313 88

Figure 2: Effectiveness of ODP-IP and MIDP-IIP. The ta-
ble shows runtime (in seconds) for 27 agents, taken for each
coalition value distribution as an average over 50 runs.

authors of ODP-IP (Michalak et al. 2016). In total, we per-
formed 12375 tests over 11 data distributions. The experi-
mental results show that MIDP-IIP algorithm performs well
for many problem instances. In particular, we observe the
following:
• Given 27 agents, with agent-based uniform, agent-based

normal, gamma, exponential, NDCS, and Chi-square
distributions, running time is reduced significantly by
10.88%, 11.17%, 21.95%, 26.65%, 36.17%, and 36.64%
respectively when compared with ODP-IP algorithm. In
these class of problems, the inequality 2 works well and
IIP does not use inequalities 3, 4, and 5 frequently.

• With beta, modified-uniform, normal, uniform, and
modified-normal distributions, MIDP-IIP and ODP-IP
performance are almost the same. When compared
MIDP-IIP with ODP-IP, we found that in this class of
problems sometimes inequality 2 works and sometimes
inequalities 3, 4, and 5 work.

The results in Figure 2 show that there are data distributions
in which MIDP-IIP gives more positive synergies. Out of 11
distributions, MIDP-IIP outperforms ODP-IP on 6 distribu-
tions. Given, 27 agents, in the case of agent-based uniform
distribution, MIDP-IIP took 449 seconds less time as com-
pared to ODP-IP.

Acknowledgments
The research presented in this article is funded by “Visves-
varaya PhD Scheme for Electronics & IT”, grant no: PhD-
MLA/4(29)/2015-16.

References
Michalak, T.; Rahwan, T.; Elkind, E.; Wooldridge, M.; and
Jennings, N. R. 2016. A hybrid exact algorithm for complete
set partitioning. Artificial Intelligence 230:14–50.
Rahwan, T., and Jennings, N. R. 2008. An improved dy-
namic programming algorithm for coalition structure gener-
ation. In Proceedings of the 7th international joint confer-
ence on Autonomous agents and multiagent systems-Volume
3, 1417–1420. International Foundation for Autonomous
Agents and Multiagent Systems.
Rahwan, T.; Ramchurn, S. D.; Dang, V. D.; Giovannucci,
A.; and Jennings, N. R. 2007. Anytime optimal coalition
structure generation. In AAAI, volume 7, 1184–1190.

167

