
Probabilistic Robust Multi-Agent Path Finding

Dor Atzmon, Ariel Felner, Roni Stern
Ben-Gurion University, Israel

dorat@post.bgu.ac.il, felner@bgu.ac.il, sternron@post.bgu.ac.il

A Multi-Agent Path Finding (MAPF) problem is defined
by a graph G = (V,E) and a set of agents {a1 . . . an}. At
each time step, an agent can either move to an adjacent lo-
cation or wait in its current location. The task is to find a
plan πi for each agent ai that moves it from its start location
si ∈ V to its goal location gi ∈ V such that agents do not
conflict, i.e., occupy the same location at the same time.1

In practice, unexpected events may delay some of the
agents, preventing them from following the plan. Thus, it is
desirable to generate a robust plan that can withstand such
delays. Recently, a form of robustness called k-robust MAPF
was introduced (Atzmon et al. 2018), in which each agent
can be delayed up to k times and no collision will occur. In
some cases, it is possible to estimate the probability that a
delay will occur. In such cases, solving all conflicts with the
same fixed value k may be less reasonable, and we might
prefer solving conflicts based on their probabilities to occur.
To this end, we explore a new form of robustness, p-robust,
where a p-robust plan is a plan that can be executed without
any collisions with a probability ≥ p.

p-Robust CBS

pR-CBS is a CBS-based algorithm (Sharon et al. 2015) de-
signed to return p-robust plans. To present pR-CBS, we in-
troduce the notion of potential conflict and its relation to
finding p-robust plans.

Definition 1 (Potential Conflict) A plan π has a potential
conflict C = 〈ai, aj , t〉 iff there exists Δ(C) ≥ 0 such that
agents ai and aj are located in the same location in times t
and t+Δ(C), respectively, i.e, when πi(t) = πj(t+Δ(C)).

A potential conflict C = 〈ai, aj , t〉 is said to have oc-
curred if agent ai experienced exactly di ≥ Δ(C) delays
before performing the tth action in πi, and agent aj expe-
rienced exactly di − Δ(C) delays before performing the
t + Δ(C) action in πj . This means the agents will collide
since πi(t) = πj(t+Δ(C)) (they will collide at time t+di).

Let P0(π) be the probability that no potential conflict will
occur when following plan π with a delay probability of pd.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This research is supported by ISF grants no. 210/17 to Roni
Stern and #844/17 to Ariel Felner and Eyal Shimony, by BSF grant
#2017692 and by NSF grant #1815660

It is easy to see that a plan π is p-robust iff the probability
that no potential conflicts will occur is ≥ p, i.e., P0(π) ≥ p.
pR-CBS is different than CBS in how it handles CT nodes,

in how it chooses and resolves conflicts, and in how it orders
nodes in the high-level open list.

Handling a CT node. When a CT node N is chosen
for expansion, pR-CBS scans N.π for potential conflicts by
checking for locations occupied by more than one agent
(even in different time steps). Then, N.π is sent to a bi-
nary verifier that returns whether the plan is p-robust (if
P0(π) ≥ p) or not. If the verifier returns TRUE, then the
CT node is declared as goal and π is returned. If the verifier
returns FALSE, it also returns P0(π) as well as a probability
PFirst(C) for each potential conflict C. PFirst(C) provides
the probability that while executing π, conflict C will occur
first in time among all potential conflicts. Note that the sum
of P0 and all PFirst probabilities equals 1, because either
the execution succeeded (P0) or one of the conflicts have
occurred (one of the PFirst).

Choosing a Conflict to Resolve. p-robust solution may
contain potential conflicts. Thus, we need to resolve a set
of conflicts such that the solution will be p-robust. pR-CBS
chooses to resolve the conflict with the highest probability
of occurring (highest PFirst). This is a greedy approach that
has high chances to reach a p-robust plan quickly, as it has
the highest potential to increase P0 in its children.

Resolving a Conflict. Let C = 〈ai, aj , t〉 be the cho-
sen potential conflict in a non-goal node N . To resolve C,
we add the range constraints 〈ai, πi(t), [t, t+Δ(C)]〉 and
〈aj , πj(t+Δ(C)), [t, t+Δ(C)]〉 to ai and aj , respectively.
This assures that these agents will not both be at the conflict-
ing location in the time frame [t, t+Δ(C)].

Choosing CT Nodes. In this paper we focused on find-
ing a p-robust plan as fast as possible. Therefore, we imple-
mented a greedy approach that chooses to expand the node
with highest P0 value. Then, when a CT node with P0 ≥ p
is found by a verifier, that node is returned as a goal.

Statistical Verifiers

We describe two verifiers that verify statistically whether P0

is greater than or equal to the desired robustness (p).
Fixed Verifier. The fixed verifier is first initialized with

the following given parameters: p, pd, s, and α, where p is
the desired robustness, pd is the constant delay probability,

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

162

s is the number of simulations to be performed, and 1 − α
is the confidence level of the statistical test. Then, a critical
value c1 is calculated by performing a Z-test as follows:

c1 = p+ Z1−α ·
√

(1− p) · p
s

(1)

c1 is calculated once and used later in every verification to
determine whether P0 ≥ p within the confidence level 1−α.

After pR-CBS has chosen to expand node N , it calls the
fixed verifier to verify statistically whether N is a goal node.
The verifier executes s simulations of the given plan (N.π)
with delay probability pd. To count collisions during execu-
tions we create a table (named occurred) that maps a given
potential conflict to the number of times it has occurred. We
also initialize a parameter: successes that counts the num-
ber of executions in which no collision has occurred. During
each execution, if a collision has occurred at a potential con-
flict C, the execution halts, and we increment occurred [C]
(initialized as 0). Otherwise, if no collision has occurred,
we increment successes . When all s simulations ended, it
sets P0 ← successes/s. If P0 > c1, it returns TRUE.
Otherwise, it sets N.P0 ← P0. For each conflict C it sets
N.PFirst(C)← occurred [C]/s and it returns FALSE.

Dynamic Verifier. This verifier chooses dynamically the
number of simulations s to be performed in every CT node,
as follows. First, it performs the minimum number of sim-
ulation that guarantees that c1 < 1, which is derived from
Equation 1 to be

⌈
Z1−α

2 · p
1−p

⌉
. If P0 > c1 then we return

TRUE. Otherwise, we might be able to perform more sim-
ulations until P0 > c1. However, the test might always fail
and this will lead to an infinite loop. To overcome this issue,
before executing more simulations, we perform another sta-
tistical test that checks whether P0 < c2 where c2 is a new
critical value which is calculated as follows:

c2 = p− Z1−α ·
√

(1− p) · p
s

(2)

If the second test passes, return FALSE. Otherwise, perform
one more simulation, and check these tests again. The verifi-
cation phase of the dynamic verifier summarized as follows.
(1) Run s simulations and approximate P0. (2) Calculate c1
(Equation 1). (3) If P0 > c1, return TRUE. (4) Calculate c2
(Equation 2). (5) If P0 < c2, return FALSE. (6) s ← s + 1,
run one more simulation, and goto step 2.

Experimental Results

We compared the performance of pR-CBS for different val-
ues of p with our two verifiers. In all of the following results
α = 0.05, pd = 0.2, and P0 was calculated based on 50
executions of the solution.

We compared standard CBS and pR-CBS with the fixed
verifier for different values of p (0.7 and 0.9) and s = 40,
on an 8x8 open grid with 8 randomly allocated agents. Ta-
ble 1 presents the average cost, planning time (in ms), and P0

for 60 problem instances. We can see that larger p increases
the cost and time but results in less collisions (higher P0).
The optimal solver achieved the lowest cost (38.5) and the
fastest planning time (only 9ms) with a tradeoff that many

Cost Time(ms) P0

CBS 38.5 9 0.41
p = 0.7 43.3 7,620 0.84
p = 0.9 50.1 37,501 0.95

Table 1: Average planning cost, runtime and for CBS and
pR-CBS with different values of p, over 8x8 open grid.

#Simulations p = 0.80 p = 0.85 p = 0.90 p = 0.95
20 59 0 0 0
40 58 57 57 0
60 57 55 55 0
160 58 56 52 49

Dynamic 59 59 57 52

Table 2: Success rate for pR-CBS out of 60 instances.

collisions occurred and only 41% of the executions were
collision-free (P0).

We also compared the fixed verifier (with a different num-
ber of simulations) and the dynamic verifier, with p =
0.8, 0.85, 0.9, and 0.95. 60 instances were generated and we
present the number of instances that could be solved within
5 minutes in Table 2. As expected, if the number of simu-
lations was too small, the fixed verifier could not solve any
instance as a result of the statistic test (c1 was greater than
1). On the other hand, the dynamic verifier could solve in-
stances for all values of p. Moreover, the success rate of the
dynamic verifier was at least as the success rate of the fixed
verifier that achieved the highest success rate. The quality
of solution and running time of the dynamic verifier and the
fixed verifier were similar for instances that could be solved
by both. The dynamic verifier performs better but it is more
complicated. Hence there is a tradeoff.

Conclusions and Future work

We studied a new form of robustness: p-robust, and pro-
posed a greedy CBS-based algorithm for finding a p-robust
plan with two possible verifiers that have an internal trade-
off. Possible lines of future work, including integrating p-
robust plans with execution policies, as suggested by Ma et
al. (2017) and better approximating the real P0 probability.

References

Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N. F. 2018. Robust multi-agent path finding. In
SOCS, 2–9.
Ma, H.; Kumar, S.; and Koenig, S. 2017. Multi-agent path
finding with delay probabilities. In AAAI.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artif. Intell. 219:40–66.

163

