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Abstract

Most real-time heuristic search algorithms solve search prob-
lems by executing a series of episodes. During each episode
the algorithm decides an action for execution. Such a deci-
sion is usually made using information gathered by running a
bounded, heuristic-search algorithm. In this paper we report
on a real-time search algorithm that does not use a search al-
gorithm to choose the next action to be applied. Rather, it
uses a neural network whose input is local information about
the search graph, comparable to the information that would
be used by a bounded search algorithm. We describe a su-
pervised learning approach to training such a network. Our
three types of maps from the Moving Al benchmarks, shows
that our algorithm is, in some cases, substantially superior
to algorithms that have access to the same information about
the graph. One of our most important conclusions is that our
extended set of features important: indeed, using features be-
yond the heuristic seems key to achieving good performance.

Introduction

To solve a search problem, most real-time heuristic search
(RTHS) algorithms run a loop similar to the one shown in
Algorithm 1. Line 2 runs a standard heuristic search algo-
rithm that is bounded in the sense that its execution time
is bounded from above by a constant. Line 3 updates the
heuristic function. Usually referred to as the learning step,
the heuristic update is needed for termination but also al-
lows subsequent searches to become more informed. Fi-
nally, Lines 4-5 selects and executes the next action (or
actions), usually based on the computation carried out in
Line 2. An example of an algorithm that conforms to Al-

Algorithm 1: Skeleton of a typical RTHS algorithm

1 while the goal state has not been reached do

2 Run a bounded heuristic search algorithm, rooted in the
current state.

3 Update the heuristic function h, of some states

4 Compute a sequence of actions ¢ using information
previously computed in Line 2

5 Perform as many actions from o as possible, observing the

environment and updating the search graph suitably

gorithm 1 is LSS-LRTA* (Koenig and Sun 2009). It uses

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a bounded A*, allowed to expand at most k states, as a
search algorithm (Line 2). We assume Open and Closed
are the open list and closed list of such a run. For the
update, it uses a variant of the Dijkstra’s algorithm to set
h(s) := mingeopen c(s,s’) + h(s"), for every state s in
Closed, where c(s, s’) denotes the cost of an optimal path
between states s and s’. Finally, it chooses ¢ as the actions
in the path from the current state to the state of least f-value
in Open (Line 4).

The use of a search algorithm in Line 2 seems very in-
grained in the RTHS literature. Nevertheless, some RTHS
algorithms, especially when run with a low lookahead value
k, can be re-interpreted as applying ad hoc decision rules.
For example, depression-avoiding version of LSS-LRTA*
(daLLSS-LRTA*; Hernandez and Baier 2012) is a variant of
LSS-LRTA* that when run with lookahead & = 1 chooses to
move to arg ming ¢ pz(s) ¢(s, s")+h(s’), where M (s) are the
neighbors of s whose h-value has changed the least among
all of the neighbors of s. This decision rule, in real-time grid
pathfinding, yields, on average, a one-order-of-magnitude
improvement on solution cost over LSS-LRTA*, whose de-
cision rule is to move to arg ming ey (s c(s,s") + h(s'),
where N (s) are the neighbors of s.

So a natural question that arises is: can other decision
rules lead to even better performance? In this paper we fo-
cus on a more specific question, namely: is it possible to
obtain better-than-state-of-the-art performance by replac-
ing the decision module (i.e., Line 4) with a neural network?

In the rest of this paper, we propose an architecture for a
neural network for making real-time decisions in real-time
grid navigation in unknown terrain. Its input is informa-
tion of states in a bounded vicinity around the current state.
Among this information, we included the heuristic function,
whether or not there are obstacles, and the visit count. The
output of the network is which state to move to. In addi-
tion, we describe a supervised imitation learning approach
(Ross, Gordon, and Bagnell 2011) to training such a net that
uses, as examples, data generated by a variant of repeated
A*. Then, we present an experimental evaluation in which
we show that our learned decision rule outperforms state-of-
the-art decision rules for planning in unknown terrain. We
show a specific configuration that substantially outperforms
a state-of-the-art real-time heuristic search algorithm that
uses the same amount of information. In addition, we show
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Figure 1: Architecture of the neural network using o« = 1.75
resulting in 77 neurons for the first layer.

that in two groups of maps our solutions are substantially
better than those obtained by a state-of-the-art algorithm that
spends a similar amount of time per planning episode. One
of our most important conclusions is that each feature we
used allows us to gain some performance. What is most in-
teresting is that h, the heuristic function, does not seem to be
the most important feature; rather, the visit counter seems to
provide more effective guidance.

Real-Time Grid Navigation

Our algorithm is designed for real-time grid path planning
on an 8-connected grid, in which horizontal, vertical, and
diagonal moves are possible. We assume unknown terrain;
that is, the agent does not know the location of the obstacles
in advance, which can only be observed from a neighboring
cell (i.e., visibility range is 1). The objective is to move the
agent from an initial cell to a goal cell.

The Neural Network

For our algorithm we use a feedforward neural network
(NN). The input to the NN is information about the current
state and its successors (described below as Input Features).
The output is the a decision; in our case, a next move to be
made.

Input Features We use a set of features describing the
3 x 3 window that includes the current state, and the 8 im-
mediate successors. There are many options that we could
have included. At the very least we wanted to use the heuris-
tic function, since this function is the only source of infor-
mation for traditional RTHS algorithms. As our research
advanced we were curious as to whether or not using ad-
ditional features would add to performance. We eventually
decided to test the following features.

1. hg: The initial octile distance from each cell to the goal.
The values are min-normalized, that is, normalized by
subtracting the minimum value in the 3 X 3 window.

2. h: The min-normalized heuristic value of every cell us-
ing the same update rule of LSS-LRTA*(k = 1). (More
details in the next section.)
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3. obstacles: Contains a 0 if no obstacle is present in the
cell, and a 10 otherwise.

4. visits: The number of times the agent has visited the cell.

5. previous move: A vector of size 8 where each position
represents one of the 8 possible moves, with a 1 in the
position corresponding to the previous move made by the
agent to reach the current state and a 0 in all remaining
positions.

For h and hy we ignore the obstacles, so all cells are

treated as empty for these features. Moreover, each win-
dow of features is rotated such that the element with value
0 (there is always one, since it is min-normalized) are ro-
tated so that the value 0 ends up being located in one of two
selected positions (depending on whether it is a diagonal or
cardinal position).
Architecture Features are concatenated in a single vector
and go through a fully connected ReLLU layer whose output
size is awA, where « is a real constant and A the size of the
input vector. Finally, the output layer has a softmax activa-
tion with output size 8, which is a one-hot codification of
the movement that the agent should make given the input.
Figure 1 illustrates the architecture.

An NN-based RTHS Algorithm

Algorithm 2 presents a pseudo-code of NNRT, an NN-based
RTHS algorithm we propose. NNRT can be viewed as a
standard RTHS algorithm that takes into account the fact
that the decision module (i.e. the NN) may not, on its own,
guarantee completeness.

Algorithm 2: Our NN-based RTHS algorithm

1 procedure NNRT
Input : A grid navigation problem; a neural network, IV; a
complete RTHS algorithm A

2 Sc¢ < initial cell of the problem

while the goal state has not been reached do

Update the h-value of the current state, s, with:
h(sc) :=ming g (s, c(s,5") + h(s")

if visits(sc) < M then
| next + move computed by network N

s w

else
| mext < move computed by RHTS algorithm A

visits(sc) < visits(sc) + 1

Perform a move towards next, updating the search graph
with observed changes in the immediate neighborhoods

11 Se — next

S e ®N awm

[

The algorithm moves using the output of the NN except
when the current cell has been visited M or more times, in
which case it uses A, a complete RTHS algorithm, as an
oracle subroutine to obtain a move. The reason why we need
to use an additional, complete RTHS algorithm is to avoid
loops: our training mechanism does not guarantee that the
resulting neural network yields a decision rule capable of
solving any given RTHS problem.

Proposition 1 NNRT is complete; that is, it will solve any
given solvable problem under the assumption that, as an ob-



Table 1: Our approach versus some well-known RTHS algorithms.

W3 LRTA | wLRTA(8) | daRTAA*(1) | daRTAA*(4) | daRTAA*(4) NNp-W3 NN-W3
Suboptimality 16.11 3.25 2.73 2.99 2.99 8.05 2.98
Time per Eps. 0.48 0.89 0.59 1.92 1.92 1.91 2.16
% Oracle Moves 18.78% 4.01%

BG LRTA | wLRTA(8) | daRTAA*(1) | daRTAA*(4) | daRTAA*(13) | NNo-BG NN-BG
Suboptimality 67.48 12.37 7.81 6.52 3.95 44.73 3.83
Time per Eps. 0.48 0.83 0.55 1.99 6.80 1.65 1.96
% Oracle Moves 32.47% 17.11%

Rooms LRTA | wLRTA(8) | daRTAA*(1) | daRTAA*(4) | daRTAA*(80) | NNp-Rooms | NN-Rooms
Suboptimality 54.24 8.22 6.38 5.72 1.50 6.94 1.43
Time per Eps. 0.47 0.77 0.53 1.84 30.76 1.74 2.08 | = n
% Oracle Moves 26.71% 3.06%

servation is made, the costs of the arcs of the search space
may only increase.

Observe this proposition means that NNRT can solve any
real-time grid navigation problem when the map is fixed,
but initially unknown.

Training via Supervised Imitation Learning

We use supervised imitation learning (SIL) as the learning
approach for the network. In SIL, the input examples de-
scribe how an expert would solve the task in various sce-
narios. The objective of learning is thus to learn to behave
like the expert. In our experiments, we attempted to use a
dagger (Ross, Gordon, and Bagnell 2011), a state-of-the-
art approach to SIL. Dagger did not yield better results than
an approach we describe below, which, to the best of our
knowledge, is novel.

Our expert—henceforth referred to as RT-Train—is an
algorithm that is a variant of Repeated A* (Koenig and
Likhachev 2002), suitable for unknown environments. Like
Repeated A*, it searches for an optimal path over the graph
in memory, and then performs the steps in such a solution,
observing the map and updating its memory as it moves.
This is carried out until a move is not possible, in which
case it replans and the cycle is repeated. Unlike Repeated
A*, each time it performs a move, it updates the heuristic
of the current state, just like Algorithm 2 does. Observe
that this algorithm has some commonalities with standard
LSS-LRTA*(k = 1), since it updates h in the same way,
updates the memory in the same way, and realizes the path
is blocked only when it cannot perform a move (that is, it
has a visibility window limited to the immediate neighbor-
hood). However, RT-Train it is not an RTHS algorithm since
it searches for a complete path to the goal, thus is capable of
computing an optimal path given the current map. RT-Train
updates the heuristic to provide our network with an exam-
ple that would more accurately reflect the value of h during
execution. Other features like visit counts are also updated.

For training we use a set II of maps. For each map we
generate two sets of random problems Py, and Py,. We
denote by E X the list of examples used for training. Train-
ing can be seen as divided in two steps: initial training and
retraining.
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Initial Training We run RT-Train over a subset Pj of
Pirain- We add to EX one example per move of RT-Train.
Using these examples, we train a first model.

Retraining We run a modified version of NNRT using the
last trained model. In each iteration, this version of NNRT
checks whether or not the situation it is looking at (given by
the network’s features) is in EX. Let EX' be an empty list.
If the current situation is not in £X then it runs M steps of
RT-TRAIN. Each of those M steps generates a new example
that is stored in £ X’. When every problem in Py, has been
solved, let EX be EX U EX’. We train our network with
the examples in £ X, we store the trained model and repeat
the retraining step unless we have reached a maximum of
retraining steps.

After retraining, for each of the NN models trained, we
run NNRT over P,,;. We calculate NNRT’s suboptimality
as SNN/SRTTrain, Where Sy is the total number of moves
employed by NNRT. Srr Train is the number of moves needed
by RT-Train. We select the model that has obtained the best
suboptimality score.

Experimental Evaluation

The objectives of our evaluation were threefold. First, we
wanted to understand the impact of the retraining phase on
performance. Second, we wanted to see whether or not our
approach could achieve state-of-the-art performance on dif-
ferent types of maps. Third, we wanted to understand which
features had influence in performance.

To achieve the second objective, we compare our algo-
rithm to depression-avoiding algorithms, which are good
representatives of the state of the art in real-time grid navi-
gation. In the analisys we compare NNRT versus algorithms
that use the same information, versus algorithms that spend
a comparable time per episode, and versus algorithms that
obtain a comparable suboptimality.

We implemented our neural network in Python using the
Keras (Chollet 2015) library. For the training phase, we used
a batch size of 32, a learning rate of 0.001 and 5 epochs.
As optimizer we used the Adam algorithm (Kingma and Ba
2014) with categorical crossentropy as loss function. Also,
for first layer we set @ = 1.75. We ran 50 retrainings and
pick the model with the best suboptimality with respect to
the validation set. To generate training data we used M = 6.



Table 2: Suboptimality obtained for trained models with dif-
ferent combinations of features in Rooms

Features Suboptimality
obstacle + hg 39.26
obstacle + hg + last move 4.94
obstacle + hg + visit_count 1.81
obstacle + hg + last move + visit count 1.52
obstacle + hg + h 10.38
obstacle + hg + h + last move 4.74
obstacle + hg + h + visit count 1.79
obstacle + hg + h + last move + visit count 1.43

These parameters were chosen because they were the ones
that produced best results during our preliminary tests. For
all tests we used daRTAA(1) as oracle.

We trained different neural networks for different types
of maps. To that end, we generated three groups of 10 maps
from MovingAlI (Sturtevant 2012). We separated each group
in 8 maps that were used for training, and 2 maps that were
used for testing. The groups were composed of maps from
World of Warcraft III (WC3), Baldurs Gate II 512 (BG)
and Rooms 32 (ROOMS). For each group we trained dif-
ferent models: NN-W3, NN-BG and NN-Rooms. We used
(| Pait|s | Pieain]) equal to (40,400), (40, 400), and (80, 800),
respectively. For each group, we used | Py | = 400.

For each of the two test maps, we generated 1000 prob-
lems. For the sake of comparison, we ran LSS-LRTA* (k
= 1), wLRTA*(8) (Rivera, Baier, and Hernandez 2015) and
daLRTA* (Hernandez and Baier 2012) with several looka-
head values. All algorithms were implemented in C, includ-
ing functions required to use the neural network. We used
OpenBLAS (Wang et al. 2013) to implement the matrix op-
erations. We ran the test over a single thread process on an
Intel Core i5 Linux machine.

Table 1 presents the results of our NN aproaches and
a selection of RTHS algorithms. Specifically, we include
three configurations of daRTAA. The first one, daRTAA(1)
is an algorithm whose decisions are made by looking at
the same 3 x 3 window as NNRT. The next configuration,
daRTAA(*¥) a configuration of daRTAA whose runtime per
episode is similar to the runtime per episode (Time per Eps.)
of NNRT. The last daRTAA configuration varies between
groups of maps and corresponds to an algorithm that ob-
tains a suboptimality score similar to our algorithm. For
NNRT, we also include the percentage of oracle moves; that
is, those moves decided by the oracle RTHS algorithm. (A
video with a comparison on the WC3 map is available at
https://streamable.com/3ych9.)

We include two versions of our algorithms to assess the
impact of the retraining phase: NNy is the model after initial
training, and NN is the best model found. We observe a
substantial difference in the suboptimality score across all
groups. NN makes fewer oracle calls than NNj.

NN vs algorithms that use the same information
LRTA*, wLRTA* and daLRTA* use the same information
as NN since all of them expand only one node before making
a decision (and thus have access to the same 3 x 3 window).
We observe NN obtains the best suboptimality except for
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WC3, where daLRTA* is slightly better. This happens be-
cause heuristic depressions in WC3 are small, so daLRTA*
avoidance mechanism is effective. The other algorithms that
use the same information require less time than NNRT since
NNRT performs matrix multiplications to decide the next
move.
NN vs algorithms that spend a comparable time per
episode

As is shown in the table, daRTAA*(4) has a similar aver-
age time per episode with NN in all maps. However, NN
outperforms daRTAA(4) in terms of suboptimality, espe-
cially in Rooms. NN vs algorithms that obtain a compa-
rable suboptimality daRTAA(4), daRTAA(13) and daR-
TAA(80) obtain a comparable suboptimality with NN in
WC3, BG and Rooms, respectively. The time per episode
of daRTAA(13) and daRTAA(80) is as much as 14.8 times
higher than that obtained by NNRT. This is explained by
the large lookahead value. On the other hand, the time per
episode of daRTAA(4) in similar to NN due to small looka-
head.
Impact of Features on Performance For our last objec-
tive we evaluated the performance of NNRT using different
sets of features (Table 2). Using only hg yields worst per-
formance but still allows us to outperform LRTA*, which
uses the updated heuristic (h, not hg), to make decisions.
We observe that adding more features always yields better
performance. The visit counter and the previous move are
critical features for our approach; more so than h. It is in-
teresting to note that no real-time heuristic search algorithm
we know of uses such features for decision-making.

Related Work

Machine learning (ML) techniques has been applied before
to real-time heuristic search. Huntley and Bulitko (2013) use
ML to predict performance and algorithm parametrization.
Kiesel, Burns, and Ruml (2015) use ML to learn what looka-
head parameter to use in a particular situation for a version
of LSS-LRTA* with dynamic lookahead. Related is also an
approach that automatically searches for a configuration of
an RTHS algorithm to optimize performance (Bulitko 2016;
Sigurdson and Bulitko 2017).

A body of work exists on the application of ML to offline
search. An example is heuristic function learning (Arfaee,
Zilles, and Holte 2011; Lelis et al. 2012). Finally, also re-
lated is recent work in deep reinforcement learning (Mnih et
al. 2015), in which a neural net is used to learn a () function
which is related to our decision-making neural net.

Summary and Conclusions

We presented a novel real-time heuristic search algorithm,
NNRT, that carries out no search but instead makes move
decisions using a neural network that receives as input lim-
ited information about the map. Our training approach has
two phases: an initial training with examples generated by
a version of repeated A* and a retraining phase that adds
more examples drawn from an actual run of the algorithm.
Our evaluation shows that retraining is important, and that
our algorithm can substantially outperforms state-of-the-art



algorithms that use the same information. An important con-
clusion is that features not currently used by real-time search
algorithms, like visit count, seem key to performance, more
so than the heuristic function.
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