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Abstract 

Network Alignment (NA) is a generalization of the graph iso-
morphism problem for non-isomorphic graphs, where the 
goal is to find a node mapping as close as possible to isomor-
phism. Recent successful NA algorithms follow a search-
based approach, such as simulated annealing. We propose to 
speed up search-based NA algorithms by pruning the search-
space based on heuristic rules derived from the topological 
features of the aligned nodes. We define several desirable 
properties of such pruning rules, analyze them theoretically, 
and propose a pruning rule based on nodes' degrees. Experi-
mental results show that using the proposed rule yields sig-
nificant speedup and higher alignment quality compared to 
the state of the art. In addition, we redefine common NA ob-
jective functions in terms of established statistical analysis 
metrics, opening a wide range of possible objective functions. 

 Introduction   

Network Alignment (NA) is a generalization of the graph 

isomorphism problem for non-isomorphic graphs, where the 

goal is to find a node mapping, as close to isomorphism as 

possible. NA is both a problem domain and a component of 

many algorithms in the Artificial Intelligence (AI) field, see 

a survey by (Frank, et al., 2016). Finding NA is useful in 

many AI problem domains including pattern recognition 

(Conte, et al., 2004), image recognition (Hsieh & Hsu, 

2004), NLP (Bayati, et al., 2013), ontology mapping (Li, et 

al., 2009), and bio-informatics (Elmsallati, et al., 2016). 

State of the art methods for finding NA employ network em-

bedding (Liu, et al., 2016) heuristic search techniques, e.g., 

simulated annealing (Mamano & Hayes, 2017), genetic al-

gorithms (Clark & Kalita, 2015; Saraph & Milenković, 

2014).  

SANA is a state of the art NA method based on simulated 

annealing that was shown to be superior to many alternative 

methods in almost all parameters (Mamano & Hayes, 2017; 

Kanne & Hayes, 2017). Unfortunately, the NA search space 

grows exponentially with the number of nodes in the aligned 

networks, which limits the scalability of SANA. Thus, 
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SANA and similar local search algorithms may not be ap-

plicable to large networks with hundreds of thousands or 

millions of nodes. 

The primary contribution of this paper is a theory for effec-

tive pruning of the NA search space. This pruning focuses 

the search on alignments that are more likely to be valuable 

and ignoring alignments where dissimilar nodes are mapped 

to each other. We present a sufficient condition for such 

pruning rules that maintains a connected search space. Then, 

we propose a heuristic pruning rule that satisfies this condi-

tion and show empirically that it improves the performance 

of SANA in both speed and accuracy. For example, on a 

benchmark of biological networks, the proposed algorithm 

found a better alignment than SANA in a third of the time.  

Beyond improving the search process, we also provide a 

deeper understanding of the NA objective functions. Find-

ing an appropriate objective function is a hot topic in NA 

research and a range of objective functions have been pro-

posed in recent years (Kanne & Hayes, 2017). Many of them 

are ad-hoc and their correctness and effectiveness are only 

analyzed experimentally. We reframe the NA problem in 

terms of a prediction problem. This allows importing well-

established prediction quality metrics to the field of NA, 

along with their theoretical guarantees and background.  

Problem Definition and Background 

There are several definitions of the Network Alignment 

(NA) problem. We focus on what is known as a pairwise 

global alignment, defined as follows. Let 𝐺1(𝑉1, 𝐸1) and 𝐺2-
(𝑉2, 𝐸2) be two undirected and unweighted graphs (net-

works), where 𝑉𝑖 and 𝐸𝑖 denote the nodes and edges respec-

tively and |𝑉1| ≤ |𝑉2|. A pairwise global alignment between 

𝐺1 and 𝐺2 is an injective function  𝑎: 𝑉1 →  𝑉2. Let 𝑎∗ denote 

the ideal, unknown, alignment function. The NA problem 

we address in this paper is to find an alignment that is as 

close as possible to 𝑎∗. A common measure for evaluating 

an alignment 𝑎 is node correctness, which is the percentage 

of correctly aligned nodes. That is  
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𝑁𝐶(𝑎) = (∑ 𝛿𝑎(𝑣),𝑎∗(𝑣)
𝑣∈𝑉1

) /|𝑉1| 

where 𝛿𝑎(𝑣),𝑎∗(𝑣) is the Kronecker delta equal to 1 if 𝑎(𝑣) =
𝑎∗(𝑣) and zero otherwise. We focus on pairwise global 

alignments as many prior works do, e.g. (Kuchaiev, et al., 

2010; Mamano & Hayes, 2017; Patro & Kingsford, 2012). 

A search-based approach for NA was shown to be very ef-

fective in practice (Mamano & Hayes, 2017; Clark & Kalita, 

2015; Vijayan, et al., 2015). In a search-based NA method, 

the NA problem is formulated as a search problem where 

states represent possible alignments, and the NA problem 

becomes the problem of finding a state that maximizes some 

objective function. Search-based NA algorithms face two 

challenges: defining the objective function to evaluate the 

quality of an alignment, and devising a search strategy effi-

cient enough to handle the huge search space of possible 

alignments. We elaborate on both topics next. 

NA Objective Functions 
Search based NA algorithms can optimize various objective 

functions (Mamano & Hayes, 2017). Ideally, we would use 

NC as an objective function. However, to compute NC we 

need the ideal alignment 𝑎∗, which is obviously not availa-

ble in practice. Therefore, search-based algorithms try to op-

timize other objective functions as a proxy for NC. One of 

the most successful objective functions is 𝑆3 (Saraph & 

Milenković, 2014), defined as follows. Let 𝐸𝑎 be the set of 

edges in 𝐸1 that are preserved by 𝑎, i.e., 𝐸𝑎 = {(𝑣, 𝑣′) ∈
𝐸1|(𝑎(𝑣), 𝑎(𝑣′)) ∈ 𝐸2}, and let �̂�𝑎 be the set of edges in the 

subgraph of 𝐺2 induced by 𝑎, i.e., �̂�𝑎 = {(𝑢, 𝑢′) ∈
𝐸2|∃ 𝑣, 𝑣′ ∈ 𝑉1 ∧ 𝑎(𝑣) = 𝑢 ∧ 𝑎(𝑣′) = 𝑢′}. The 𝑆3 objective 

function is defined as 𝑆3(𝑎) = |𝐸𝑎|/(|𝐸1| + |�̂�𝑎| − |𝐸𝑎|). 

This score punishes not only for edges in 𝐸1 that were left 

unmatched, but also for edges in 𝐸2 that were supposed to 

be matched but were not. 

Simulated Annealing Network Aligner (SANA) 
Given an objective function, one can theoretically use any 

search algorithm to find an alignment that optimizes this ob-

jective function. However, the number of possible align-

ments is very large (factorial of the number of nodes in the 

aligned networks), and therefore heuristic search algorithms 

have been used. Recent work proposed the SANA algorithm 

(Mamano & Hayes, 2017), which uses the simulated anneal-

ing local search algorithm (Kirkpatrick, et al., 1983). SANA 

was shown to be extremely effective in both runtime and NA 

quality. 

SANA uses SA as follows. The initial state 𝑎0 is a given 

initial alignment. When such an alignment is not given, 

SANA chooses a random alignment as 𝑎0. The state transi-

tions are all the alignments that can be created by perform-

ing a single alignment manipulation action. SANA allows 

two types of alignment manipulation actions: 

 Change. Changing the target of a single node 𝑣.  

 Swap. Swapping the targets of two nodes 𝑢, 𝑣.  

Two alignments are considered neighbors if we can obtain 

one by a single alignment manipulation action on the other.  

The temperature schedule used by SANA is an exponential 

decay function (see (Mamano & Hayes, 2017) for details). 

SANA was shown to be very effective in practice across a 

range of objective functions. In fact, Mamano and Hayes 

(2017) consider investigation of effective objective func-

tions for search-based NA as the primary direction for fur-

ther research. 

Limitations of SANA 

Although SANA has many advantages, it also has a few 

shortcomings. First, SANA does not scale well to very large 

networks. This is because the size of its search space is a 

factorial of the number of nodes in the aligned networks 

(|𝑉2|!/(|𝑉2| − |𝑉1|)!), and the branching factor which is 

(|𝑉2| + 0.5|𝑉1|(|𝑉1| − 1)), grows quadratically with the 

size of 𝐺1. Second, SANA is blind to node properties that 

are not encompassed by the objective function. Thus, if ad-

ditional knowledge about the correct alignment is available, 

SANA cannot consider it without merging it into a single 

objective function, which is not always possible. In addition, 

the creators of SANA observed that there are many different 

alignments with close to perfect 𝑆3 score but far from per-

fect 𝑁𝐶 score (Mamano & Hayes, 2017). The NA algorithm 

we propose addresses these shortcomings. 

Focused SANA 

Next, we present Focused SANA (F-SANA), an improve-

ment over SANA. The key difference between SANA and 

F-SANA is two-fold. First, F-SANA creates an intelligent 

initial alignment. Second, it imposes additional restrictions 

over the state transitions that can be applied at every itera-

tion of SANA. Informally, these restrictions verify that 

nodes mapped to each other in any considered alignment are 

similar, where nodes similarity can be computed based on 

their properties or based on network topology. Using these 

restrictions drastically reduces the size of the search space, 

and consequently improves the algorithm's running time. 

Also, we show that these restrictions result in finding better 

alignments.  

To formally describe the F-SANA algorithm, we introduce 

the following definitions.  

Definition 1 [Ranking Function, Rank]: For a network 

𝐺(𝑉, 𝐸), 𝑅𝑎𝑛𝑘: 𝑉 → ℕ is called the Ranking Function, and 

𝑅𝑎𝑛𝑘(𝑣) is called the Rank of the node 𝑣. 

The ranking induced by a ranking function, may be applica-

tion dependent (e.g. for social networks it might be address, 

age etc.), or application independent (e.g. node's degree, be-

tweenness etc.). A perfect ranking function for a given NA 

problem gives the same rank only to nodes that are aligned 

to each other in 𝑎∗, i.e. for all 𝑣 ∈ 𝑉1 and 𝑢 ∈ 𝑉2 it holds that 

(𝑅𝑎𝑛𝑘(𝑣) = 𝑅𝑎𝑛𝑘(𝑢)) ⇔ (𝑎∗(𝑣) = 𝑢). Finding a perfect 

ranking function is hard. For an imperfect ranking function, 
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the ranks of  𝑢 and 𝑣, such that 𝑎∗(𝑣) = 𝑢, may differ. To 

this end, we define a candidate function (CF) that defines 

for every rank 𝑟 a set of ranks (𝐶𝐹(𝑟) ⊂ ℕ). We expect 

nodes with rank 𝑟 to be aligned by 𝑎∗ to nodes with ranks in 

𝐶𝐹(𝑟). 

Definition 2 [Candidate Function]: For two networks 

𝐺1(𝑉1, 𝐸1) and 𝐺2(𝑉2, 𝐸2), a Candidate Function 

𝐶𝐹: 𝑅𝑎𝑛𝑘(𝑉1) → 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡(𝑅𝑎𝑛𝑘(𝑉2)) is a function that 

maps a rank to a set of ranks.  

For a given node 𝑣 ∈  𝑉1, we call the set of nodes in 𝑉2 with 

a rank in 𝐶𝐹(𝑅𝑎𝑛𝑘(𝑣)) the set of candidates of 𝑣. We say 

that NA is legal if each node in the source network is aligned 

to one of its candidates in the target network. Formally: 

Definition 3 [Legal NA]: Given NA 𝑎: 𝑉1 → 𝑉2  is Legal 

if  ∀𝑣 ∈ 𝑉1: 𝑅𝑎𝑛𝑘(𝑎(𝑣)) ∈ 𝐶𝐹(𝑅𝑎𝑛𝑘(𝑣)). 

The NA algorithm we propose, called F-SANA, uses a given 

candidate function to limit SANA to consider only align-

ment manipulation operations that result in a legal align-

ment. This is done by modifying the random state transition 

choice as follows.  

Let 𝑎 be the current alignment. For a change operation, we 

choose a random node 𝑣 from 𝑉1. Then, we choose a random 

node from the "unoccupied" candidates of 𝑣, and the new 

alignment maps 𝑣  to this candidate. For a swap operation, 

after choosing a random node 𝑣 from 𝑉1, we choose a ran-

dom node 𝑢 from the candidates of 𝑣 that has an origin in 𝑉1 

in the current alignment, i.e., ∃𝑣′ ∈ 𝑉1 such that 𝑎(𝑣′) = 𝑢. 

The swap operation is only allowed if 𝑎(𝑣) is a candidate of 

𝑣′. This can be implemented efficiently with appropriate 

data structures. Note that, for the trivial ranking function that 

maps all nodes in both networks to 1, F-SANA is exactly 

SANA. Thus, F-SANA is, in fact, a generalization of 

SANA. As we discuss below and show experimentally, it is 

possible to define a non-trivial candidate function that 

causes F-SANA to perform significantly better than SANA. 

Effective candidate functions 
The effectiveness of F-SANA depends on the chosen candi-

date function. We suggest three desirable properties for a 

candidate function:  

(1) Completeness preserving (CP). A candidate function is 

completeness preserving if every legal alignment can be 

reached from every other legal alignment by using only the 

state transition functions allowed by F-SANA. That is, the 

search space of F-SANA is connected when using this can-

didate function. 

(2) Efficient. A candidate function is efficient if its compu-

tation time is lower than the time saved during the search 

process due to the search space pruning.   

(3) Optimality preserving (OP). A candidate function is 

optimality preserving if 𝑎∗ is legal w.r.t. its ranking func-

tion.  

In addition, the running time of F-SANA depends on the 

number of candidates for every node. Thus, it is desirable 

for an effective candidate function to map as few candidates 

as possible for each node. However, there is a tradeoff, since 

we need to be careful to stay as close as possible to being 

OP. 

Conditions for a CP candidate function 
Some candidate functions are not CP (an example was omit-

ted due to space limitations). 

Next, we propose a sufficient condition for identifying that 

a given candidate function is CP. Checking whether it is also 

efficient requires a runtime complexity analysis. We leave 

providing sufficient conditions for OP to future research. 

Theorem 1: Let 𝐺1(𝑉1, 𝐸1), 𝐺2(𝑉2, 𝐸2), be networks such 

that |𝑉1| ≤ |𝑉2|, with a ranking function 𝑅𝑎𝑛𝑘 and a candi-

date function 𝐶𝐹. If (*) ∀𝑋 ∈ 𝐼𝑚𝑔(𝐶𝐹): X is continuous 

(i.e. ∀𝑖, 𝑗 ∈ 𝑋: 𝑖 ≤ ℎ ≤ 𝑗 → ℎ ∈ 𝑋), then every 2 legal align-

ments are connected in the space of legal NAs. 
 

Proof is omitted due to space constraints. 

For example, consider two social networks where each node 

represents a person, and is associated with that person's age 

and gender. Now assume we want to align these networks 

so that nodes that represent the same person are aligned to 

each other. Assuming that the edge and gender are correctly 

reported in both social networks, we can build a perfect 

ranking function by marking nodes with the same age and 

gender by the same number with respect to lexicographical 

order of age and gender. Obviously this candidate function 

is CP by Theorem 1. It is efficient since 𝑂(|𝑉|) is much 

smaller than the complexity of the search part of the algo-

rithm. It is also OP (assuming that the data is correct and the 

networks consist of the same people). 

NA Objective Functions 

F-SANA improves on SANA by focusing its search using 

the candidate functions. A key factor in the success of search 

algorithms is the objective functions they aim to optimize. 

In fact, (Mamano & Hayes, 2017) claimed that the research 

for better objective functions should be the main focus of 

NA research. Indeed, many objective functions have been 

proposed for NA. To choose in a principle manner the ap-

propriate objective function, we map in this section common 

NA objective functions to classical measures from the Ma-

chine Learning (ML) literature for evaluating classifiers.   

A binary ML classifier assigns either Positive (P) or Nega-

tive (N) label to any given instance (i.e. an object being clas-

sified). When the classifier is evaluated the predicted values 

are compared to the ground truth. Instances that are labelled 

by the classifier as Positive and are indeed positive accord-

ing to the ground truth are called True Positive (TP) in-

stances. Instances that are incorrectly classified as Positive 

by the classifier are called False Positive (FP) instances. 

True Negative (TN) and False Negative (FN) instances are 

defined symmetrically.  
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For the sake of the following discussion consider a classifier 

𝑐𝑙: 𝑉1 × 𝑉1 → {𝑃, 𝑁} which assigns a Positive (P) label to a 

pair of nodes if they are adjacent in 𝐺1 and a Negative (N) 

label otherwise:  

𝑐𝑙((𝑣1, 𝑣2)) = {
𝑃, (𝑣1, 𝑣2) ∈ 𝐸1

𝑁, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We say that an alignment a maps an edge (𝑣1, 𝑣2) ∈ 𝐸1 to 

an edge in 𝐺2 iff (𝑎(𝑣1), 𝑎(𝑣2)) ∈ 𝐸2. We expect all edges 

in 𝐺1 to be mapped to edges in 𝐺2 and all non-adjacent pairs 

of nodes in 𝐺1 to be mapped to non-adjacent pairs of nodes 

in 𝐺2. Thus the classifier 𝑐𝑙 assigns the correct label for 

(𝑣1, 𝑣2) iff (𝑣1, 𝑣2) ∈ 𝐸1 ⇔ (𝑎(𝑣1), 𝑎(𝑣2)) ∈ 𝐸2 . 
Next we define the confusion matrix (TP, FP, TN, FN) in 

terms of NA. The TP is the set of edges in 𝐸1 ⊆ 𝑉1 × 𝑉1 

(hence positive) that were mapped by a to edges in 𝐸2 (hence 

true): 𝑇𝑃 = {(𝑣, 𝑣′) ∈ 𝐸1: (𝑎(𝑣), 𝑎(𝑣′)) ∈ 𝐸2}. 

FP is the set of edges in 𝐸1 that were mapped to non-edges 

in 𝐺2: 𝐹𝑃 = {(𝑣, 𝑣′) ∈ 𝐸1: (𝑎(𝑣), 𝑎(𝑣′)) ∉ 𝐸2}. 

FN are the pairs of nodes which are not edges in 𝐺1 (hence 

negative) that were mapped to edges of 𝐺2 (hence false): 

𝐹𝑁 = {(𝑣, 𝑣′) ∉ 𝐸1: (𝑎(𝑣), 𝑎(𝑣′)) ∈ 𝐸2} 

Finally, TN is the set of non-edges that were mapped to non-

edges. 

These observations allow representing many NA objective 

functions in the same terms in which classification perfor-

mance measures are defined (e.g. precision, accuracy, re-

call). Moreover, we show (omitted due to space restrictions) 

that some objective functions suggested in literature are "re-

invented" measures, e.g. 𝐸𝐶(𝑎) by (Kuchaiev, et al., 2010) 

& 𝐼𝐶𝑆(𝑎) by (Patro & Kingsford, 2012) are actually preci-

sion & recall respectively. Also the score 𝑆3(𝑎)  =
|𝑇𝑃|/(|𝑇𝑃| + |𝐹𝑃| + |𝐹𝑁|) is very similar to the well 

known 𝐹1-score = 2|𝑇𝑃|/(2|𝑇𝑃| + |𝐹𝑃| + |𝐹𝑁|).  

Beyond the elegance of mapping NA specific measures to 

common measures from the ML literature, this mapping 

opens the door to importing a wide range of more sophisti-

cated objective functions from the ML literature back to NA, 

leveraging the years of ML research behind them.  

Experiments 

To show the advantages of F-SANA in practice, we com-

pared it experimentally with SANA. In this paper we present 

only one set of experiments due to space constraints.  

As a ranking function, we used the nodes' degrees. We ex-

perimented with several candidate functions, and ended up 

using the following. First, we sorted the node of each net-

work by their degrees. Let 𝑣1, … , 𝑣𝑛 and 𝑢1, … , 𝑢𝑚 be the 

nodes, where deg(𝑣𝑖) ≤ deg(𝑣𝑖+1) and deg(𝑢𝑖) ≤
deg(𝑢𝑖+1) for every 𝑖. Then, we create an initial alignment, 

denoted 𝑎0, by mapping nodes according to their order, i.e., 

𝑎0(𝑣𝑖) = 𝑢𝑖. For every rank 𝑟 of nodes in 𝑉1 we denote by 

𝑅(𝑟) the set of nodes in 𝑉2 that were mapped to nodes in 𝑉1 

with rank 𝑟:  

𝑅(𝑟) = {𝑢 ∈ 𝑉2| ∃𝑣 ∈ 𝑉1: 𝑎0(𝑣) = 𝑢 ∧ 𝑅𝑎𝑛𝑘(𝑣) = 𝑟} 

Let 𝑅𝑎𝑛𝑘𝑠(𝑉2) be the set of all ranks in 𝑉2. We defined the 

candidate function 𝐶𝐹 as follows 

𝐶𝐹(𝑟) = {𝑟′|𝑟′ ∈ 𝑅𝑎𝑛𝑘𝑠(𝑉2) ∧  𝑟′ ∈ [𝑚 − ⌈√𝑚⌉, 𝑀 + ⌈√𝑀⌉]} 

Where  𝑚 = min{𝑟, 𝑚𝑖𝑛(𝑅(𝑟))}   &   𝑀 = max {𝑟, max(𝑅(𝑟))}. 

Intuitively, 𝐶𝐹 extends the initial alignment so that nodes of 

the same rank will have the same set of candidates and this 

set is continuous, hence 𝐶𝐹 is CP (Theorem 1). Also, we 

extend the rank bounds by ⌈√𝑚⌉ and ⌈√𝑀⌉. 
The dataset we experimented on is a standard NA bench-

mark from (Collins, et al., 2007), that was used to evaluate 

SANA and many other algorithms. It consists of 6 networks 

denoted Y0, Y5, Y10, Y15, Y20, and Y25. Each network 

represents a protein-protein interaction (PPI) network of 

yeast. All the networks have 1004 nodes. The difference be-

tween the six networks is the number of edges where YX 

has X% more edges than Y0, which has 8323 edges. 

To assess the quality of the alignments generated by SANA 

and F-SANA, we used the NC (since we know 𝑎∗). In addi-

tion, we report the 𝑆3 score and the Largest Common Con-

nected Subgraph (LCCS), which indicates whether the 

alignment found a large similar subgraph (Kuchaiev, et al., 

2010; Saraph & Milenković, 2014). 

We ran SANA and F-SANA to align the base network Y0 

to each of its noisy variants Y05,…,Y25. Figure 1 shows the 

NC, 𝑆3, and LCCS results as a function of the number of 

edges added to the base network (x-axis). Different data 

lines correspond to different algorithms and time budgets (3, 

5, and 10 minutes). The same general trend can be observed 

in these results also: F-SANA is able to find higher quality 

alignments, according to all evaluated measures (NC, 𝑆3, 

and LCCS) for every given time budget and network pair, 

regardless of how many edges were added. Even F-SANA 

with 3 minutes time budget (yellow solid line with diamond 

markers) achieves better results than SANA with 10 

minutes, in every measure and every network pair. These 

results show the robustness of F-SANA's advantage over 

SANA. In conclusion, F-SANA exhibits higher quality net-

work alignments in shorter times compared to SANA over a 

range of datasets, time budgets, and network variants. 

Conclusions 

We proposed two contributions to the NA search problem. 

Primarily, we propose an effective way to perform search 

Fig. 1. Results for the second dataset. 
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space pruning for NA. We provide some theoretical founda-

tion for this pruning and implement this approach into an 

improved algorithm based on SANA. The proposed pruning 

approach is applicable to other search based NA methods as 

well. Additionally, we reframe the NA in terms of classifi-

cation/prediction in order to significantly expand the set of 

objective functions (an important research focus in NA) 

with well-established performance metrics used in statistical 

analysis. We suggest that research in those two directions 

will provide great improvement in the ability to align net-

works, and make NA even more widely applicable in even 

more domains than it already is. 
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