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Abstract

Quantum circuit compilation (QCC) is an important problem
in the emerging field of quantum computing. The problem
has a strong relevance to combinatorial search, as solving ap-
proaches recently published include constraint programming
and temporal planning. In this paper, we focus on a complex-
ity analysis of quantum circuit compilation. We formulate a
makespan optimization problem based on QCC, and prove
that the problem is NP-complete. To the best of our knowl-
edge, this is the first study on the theoretical complexity of
QCC.

1 Introduction
In quantum computing information is stored in qubits which
are the basic memory units of quantum processors. Quan-
tum algorithms typically process this information by apply-
ing quantum operations (called quantum gates) on subsets
of qubits. Quantum gates are analogous to instructions on
registers in classical computing. In general, a quantum al-
gorithm must be compiled into a set of elementary quantum
gates which are then applied in sequence at specific times
in order to run on a specific quantum hardware (Nielsen and
Chuang 2010; Rieffel and Pollack 2011).

Current computation models for quantum computing re-
quire the quantum algorithms to be specified as quantum cir-
cuits on idealized hardware because the physical hardware
may have varying constraints. However, compiling a cir-
cuit for idealized hardware requires adding additional gates
that move qubit states to locations where the desired gate
could act upon them under the physical constraints of the
actual quantum processor. Furthermore, quantum hardware
suffers from a phenomenon called decoherence which de-
grades the performance of quantum algorithms over time.
Therefore, it is also important to minimize the duration (i.e.,
the makespan) of the circuit that carries out the quantum
computation in order to minimize the decoherence experi-
enced by the computation (Nielsen and Chuang 2010).

There has been significant progress over the past few
years on synthesizing quantum circuits from algorithm spec-
ification (Smith, Curtis, and Zeng 2016; Steiger, Haner, and
Troyer 2016). However, the problem of compiling idealized
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quantum circuits for realistic quantum hardware has been
explored only recently (Venturelli et al. 2017; Booth et al.
2018). This has lead to novel compilation methods based on
classical planning and constraint programming techniques.
More specifically, temporal planning is applied to the quan-
tum circuit compilation problem to find solutions (plans)
that minimize the duration of the corresponding compiled
circuits. Subsequently, the planning solutions can be used
by a constraint programming model to find a much higher
quality solution, thus reducing further the quantum circuit’s
duration.

In this paper, we revisit the quantum circuit compila-
tion (QCC) problem and explore some of its computational
complexity aspects. Specifically, we consider the makespan
optimization QCC problem on general graphs. We show
that the problem is NP-complete. The NP-completeness of
makespan optimal QCC with a planar graph remains open.
Our NP-completeness proof holds even in the presence
of additional features such as crosstalk constraints, which
are present in certain existing quantum hardware architec-
tures (Booth et al. 2018).

The paper is organized as follows. In Section 2 we for-
mally define the QCC problem, and formulate the cor-
responding makespan optimization problem for general
graphs. Section 3 presents our main result that proves the
NP-completeness, while Section 4 provides concluding re-
marks and outlines a few directions of future work.

2 Problem Definition
We present a definition of Quantum Circuit Compilation
(QCC) adapted from Booth et al.’s work (2018). We define
the problem as a structure 〈G = (V,E), A, I, g〉. G is an
undirected graph with several types of edges. (We say that
the edges are colored. Edge types are explained later in this
section.) Booth et al. (2018) state that graphs are planar. In
our work we do not address this condition.

The time is discretized.
Nodes in the graph represent qubits. A is a set of qubit

states with |A| ≤ |V |. At any point in time, there is a config-
uration where each qubit state occupies a node in the graph
(qubit). A node can host at most one qubit state at a time.
We say that a qubit without a qubit state q ∈ A has an empty
qubit state. The initial configuration (i.e., the qubit state of
each qubit at the beginning) is represented by I .
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Edges correspond to 2-qubit quantum gates. We consider
swap gates and phase separation (PS) gates (Venturelli et al.
2017; Farhi, Goldstone, and Gutmann 2014).

At a given time, the qubit states of two adjacent qubits can
be involved in a gate operation. If two qubits n1 and n2 are
connected through a swap edge (i.e., a swap gate is applied
to qubits n1 and n2, respectively), the two qubit states can
swap their locations. Such an operation can take several dis-
crete steps, given as an input in the definition of the problem.
Swap operations include the particular case when one of the
qubits (e.g., n2) has an empty qubit state (which can happen
when |A| < |V |). In such a case, n1’s qubit state moves to
n2, and the qubit state of n1 becomes empty.

Likewise, two qubits connected via a PS edge can be in-
volved in a PS gate operation. PS operations are used to de-
fine the goal, as shown later in this section. For each PS gate,
the duration of such an operation is provided as an input as
well.

The type of a gate (i.e., swap or PS) together with its cor-
responding duration uniquely define the type (the color) of
the corresponding edge in our graph G.

Operations can be performed in parallel, provided that
they do not interfere with each other. That is, at any given
time, a qubit may be involved in at most one operation.

The goal g is defined as a set of pairs of qubit states.
If a pair of qubit states (qi, qj) belongs to g, then at some
point in time qi and qj must perform a PS operation together.
As mentioned earlier, to be able to perform a PS operation,
we need to bring the two qubit states at hand to two nodes
(qubits) connected through a PS edge (gate).

A solution is a series of operations that leads to satisfying
all goals (not necessarily all at the same time). A solution
is optimal if the makespan (i.e., total number of time steps
with moves allowed in parallel) is minimal.

As an extension to the problem, Booth et al. (2018)
present the so-called crosstalk constraints (QCC-X), which
are present in certain quantum hardware architectures, such
as Google devices (Boxio 2016). According to these con-
straints, when a qubit is involved in a gate operation, its ad-
jacent qubits cannot be involved in a different operation at
the same time. Consider two qubits n1 and n2 performing a
swap or a PS operation. If n3 is adjacent to n2, then n3 can-
not be involved in a gate operation (swap or PS operation) at
the same time. Our theoretical results, presented in the next
section, hold with and without the QCC-X constraints.

QCC is related to the problem of swapping colored tokens
in graphs (Yamanaka et al. 2015). In this problem, the nodes
of a graph can host one colored token each. Two adjacent
tokens can swap their positions. Each node has a goal color.
The task is to reach a configuration where the goal color
of each node coincides with the color of its hosted token.
Significant differences between QCC and the token swap-
ping problem include the way the goal is defined, and the
fact that tokens with the same color are indistinguishable in
token swapping problems. See (Yamanaka et al. 2015) for
complexity results available for various formulations of to-
ken swapping problems.

QCC also bears a relation to multi-agent path plan-
ning (Kornhauser, Miller, and Spirakis 1984; Silver 2005). If

we view qubit states as agents, the problem involves moving
agents in a graph. There are important differences, however.
In multi-agent path planning, swapping the positions of two
agents along an edge is not permitted. Furthermore, the goal
is to bring each agent to its target node. The target of each
agent is fixed. In contrast, in QCC, we can perform a goal
PS operation at any PS gate (edge) available in the graph.

3 Problem Complexity
Definition 1 (MO-QCC). The MO-QCC (Makespan Opti-
mal QCC) is defined as follows. Input: A QCC instance as
defined in the previous section, with no crosstalk constraints;
and a positive integer τ . Question: Does the instance have a
solution with the makespan no larger than τ?

Definition 2 (MO-QCCX). The MO-QCCX (Makespan Op-
timal QCC with crosstalk constraints) is similar to MO-
QCC, except that crosstalk constraints must be satisfied.

We prove that both MO-QCC and MO-QCCX are NP-
complete. For clarity, we focus first on MO-QCC, and refer
to MO-QCCX in the last part of this section. The proof idea
is related to proofs available for multi-agent path planning
problems (Surynek 2010; Yu and LaValle 2015). The hard-
ness will be shown with a reduction from SAT. The reduc-
tion will make use of two types of gadgets, called variable
gadgets and clause gadgets, respectively. Next, we introduce
each gadget type.

3.1 Variable Gadgets
A variable gadget is a QCC instance. Such a gadget can
be defined for any number n of qubit states. We introduce
variable gadgets with an example for n = 4, illustrated
in Figure 1. Then we generalize to arbitrary n values. In
the example, we have 4 qubit states, A = {q1, q2, q3, q4}.
The graph topology is shown in the figure. The edge types
are explained in the caption. Initially, the qubit states are
at the nodes in the middle “column” of the graph topol-
ogy. The goal is {(q1, q2), (q2, q3), (q3, q4)}. The general-
ization from |A| = 4 to an arbitrarily large set of agents
A = {q1, . . . , qn} is easy: have n “rows” in the graph
shown in Figure 1. Each “row” is one edge longer than the
previous in each direction, except for the last row, which
has the same length as the second last one. Set the goal to
{(q1, q2), (q2, q3) . . . (qn−1, qn)}.

Given a qubit state q and a time t, we say that q is idle at
time t if q is not involved in any gate operation (swap or PS)
at that time.

We say that a solution has no early idle qubit states if no
qubit state stays idle at any time before fulfilling its goal PS
operations.

Lemma 1. Consider a variable gadget with |A| = n.
There exists a solution with no early idle qubit states, whose
makespan is d(2n+ z − 1).

Proof. This can be shown by induction on n. The claim is
straightforward for n = 2: the two qubit states require d(2+
z) time steps to reach the PS gate, and another d time steps
to complete the PS operation, to a total of d(z+3) = d(2n+
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Figure 1: An example of a variable gadget, used as a running example for Lemma 1. A thin solid line represents a swap edge in
the graph. A dashed line represents a chain of z swap edges and z − 1 nodes, where z is a parameter specific to each variable
gadget. A thick vertical line (red on a colour printout) represents a PS edge. Swap edges with no label have a duration d. (This
includes the swap edges contained in the dash-line chains.) A given “row” i has 0 or more swap edges located between the end
of the dash-line chain and the first PS gate adjacent to the row. These have a duration of 2d. Their duration is explicitly marked
in the figure. In the initial configuration I , the qubit states q1, q2, q3, q4 are located at the nodes in the “middle column”, as
shown in the figure.

z − 1) time steps. See the top two rows in Figure 1 for an
illustration.

For n > 2, assume that the result holds for n−1. Thus, in
the subproblem corresponding to the first n− 1 qubit states,
qn−1 finishes its first PS operation by the time d(2(n− 1)+
z−1). This qubit state needs d additional time steps to reach
its second PS gate, increasing the time to d(2(n− 1) + z −
1) + d = d(2n+ z − 2).

Observe that qn can reach the PS gate by the same time,
with no idle times: d(2+z)+2d(n−2) = d(2+z+2n−4) =
d(2n + z − 2). The term d(2 + z) corresponds to the part
where qn travels to the end of the dash-line chain. The term
2d(n− 2) is for the remaining swap operations.

The PS operation for qn−1 and qn requires d time steps,
increasing the makespan to d(2n− 2 + z) + d.

In summary, the solution to the n−1 subproblem together
with the actions involving qn form a solution with no early
idle qubit states. The makespan is d(2n+ z − 1).

Lemma 2. Consider a variable gadget with |A| = n, and
with each dash-line chain having z edges. Then an optimal
solution has d(2n+ z − 1) time steps.

Proof. A solution with the corresponding makespan value
exists, according to Lemma 1. It remains to show that every
solution requires at least d(2n+ z − 1) time steps.

Observe that the qubit state qn needs at least d(2 + z) +
2d(n−2)+d = d(2n+z−1) time steps to fulfill its goal PS
operation, as shown in the proof to Lemma 1. Finally, the PS
operation for qn−1 and qn requires d time steps. Therefore,
the makespan of any solution is no smaller than d(2n+ z −
1).

Lemma 3. In a variable gadget, no makespan optimal so-
lution can possibly have early idle qubit states.

Proof. Assume by contradiction that a qubit state qi can stay
idle before fulfilling its goal PS operations. If i = n, it

immediately follows that the makespan gets larger than the
value presented in Lemma 2, which is a contradiction.

Assume now that i < n. As qi and qi+1 synchronize for
their common PS operation, it follows that qi+1 has an early
idle time. It recursively follows that qn has an early idle time,
which takes us to the case i = n, addressed earlier.

Given a variable gadget with n qubit states, define Sl as
the set of blue nodes1 at the left (two columns away from the
middle column), and Sr as the set of blue nodes at the right.
Clearly, |Sl| = |Sr| = |A| = n.

Corollary 1. In any makespan optimal solution of a vari-
able gadget, at time t = 2d either all qubit states q ∈ A
are located in Sl, or they are all located in Sr. Both options
are possible, in the sense that there exists an optimal solu-
tion involving subset Sl, and there exists an optimal solution
involving Sr.

Proof. In a makespan optimal solution, we have that either:
i) all qubit states travel to the left and use the PS gates at the
left; or ii) all qubit states travel to the right and use the PS
gates at the right. According to Lemma 3, qubit states cannot
have early idle times in an optimal solution. It follows that,
at time 2d, either all qubit states are in Sl (case i) or all qubit
states are in Sr (case ii).

3.2 Clause Gadgets
A clause gadget is a QCC instance as illustrated in Figure 2.
There are two qubit states, a1 and b1, whose initial loca-
tions are shown in the picture. The node initially hosting a1
branches into m neighbor nodes. We say that the degree of
the clause gadget is m. The goal is (a1, b1). Swap and PS
operations require d time steps each.

Lemma 4. In a makespan optimal solution of a clause gad-
get, the two qubit states have no early idle times. At time 2d,
the qubit state a1 is at one of the m blue nodes (light grey
on a black and white printout).

1Light grey nodes on a black and white printout.
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Figure 2: A clause gadget. As in Figure 1, thin solid lines are swap edges. A dashed line is a chain of z swap edges and z − 1
nodes, where z is a parameter specific to each gadget. The thick red line at the middle is a PS edge.

Proof. The number of swap operations needed to reach the
PS gate is the same for both qubit states, which is why early
idle times cannot be present in an optimal solution.

Lemma 5. The makespan of an optimal solution is d(5+z),
where z is the number of edges in a dash-line chain.

Proof. The two qubit states need d(4+z) time steps to travel
in parallel to the PS gate. The PS operation requires d addi-
tional time steps.

3.3 Hardness Results
Theorem 1. MO-QCC is NP-complete.

Proof. First, we argue that the problem is in NP. Observe
that QCC instances can be solved suboptimally in poly-
nomial time as follows. Pick a pair of qubit states in the
goal, have the two qubit states meet at a PS gate, and ap-
ply a PS operation. Repeat this for all pairs of qubit states
in the goal. It follows that optimal solutions have a polyno-
mial makespan. Thus, any optimal solution can be verified
in polynomial time.

The hardness is shown with a reduction from SAT. Con-
sider an arbitrary SAT formula in the conjunctive normal
form (CNF). Extend it into an equivalent formula where, for
each variable v, the number of positive literals of v is equal
to the number of negative literals of v. This can be performed
as follows: assume that initially v has op occurrences as a
positive literal and on occurrences as a negative literal, with
op 6= on. If on < op, add a clause (v ∨¬v ∨ · · · ∨ ¬v), with
op − on + 1 copies of ¬v in that clause. If op < on, add a
clause (¬v ∨ v ∨ · · · ∨ v), with on − op + 1 copies of v in
that clause.

Given a variable v, let nv be the number of its positive
literals, which is equal to the number of its negative literals.
Consider an arbitrary but fixed ordering of v’s positive liter-
als, OPv , and an arbitrary but fixed ordering of the negative
literals, ONv .

Construct a QCC instance α as follows.
We build a variable gadget for each variable in the SAT

formula, and a clause gadget for each clause.
For variable v, build a variable gadget V G(v), where the

setA contains nv qubit states, denoted as qv1 , . . . , q
v
nv

. Nodes

in Sl correspond to negative literals of v. We label these
nodes as Nv

1 , . . . , N
v
nv

(in the order given by OPv). Nodes
in Sr correspond to the positive literals of v. We label these
nodes as P v

1 , . . . , P
v
nv

(in the order given by ONv).
For each clause c with m literals, build a clause gadget

CG(c) with degree m. Call the two qubit states ac and bc.
Recall that in an individual gadget all dash-line chains

have the same length. Set the length of the chains (i.e., the
z value in each gadget) in such a way that all gadgets (both
variable and clause gadgets), taken as independent instances,
have the same optimal solution makespan.2 Let τ be such a
common optimal makespan.

So far, we have built a set of independent gadgets. Now
we combine them to obtain our instance α. The graph of the
instance α is the union of the graphs of all gadgets, where the
gadgets may have some overlapping nodes. Specifically, a
variable gadget and a clause gadget may have some common
blue nodes. If the k-th negative literal of variable v belongs
to a clause c, the corresponding node Nv

k belongs both to
V G(v) and CG(c). If the l-th positive literal belongs to a
clause c′, the node P v

l belongs to both V G(v) and CG(c′).
The set of qubit states is the union of all qubit states from

all gadgets, the goal is the union of all goals, and the initial
configuration is the union of all initial configurations. This
completes the construction of α.

Having a qubit state qvi in a blue node at time 2d is equiv-
alent to setting the literal corresponding to that node to false.
Having a qubit state ac in a blue node (corresponding to a lit-
eral in the clause c) at time 2d ensures that the corresponding
literal can be set to true in the SAT formula.

We claim that the SAT formula has a solution if and only
if our QCC instance has a solution of makespan τ . If the
SAT formula has a solution, guide all qvi qubit states cor-
responding to a variable v through P v nodes if v = false
in the solution, or through Nv nodes otherwise. As each

2To achieve this, use the formulas provided in Lemmas 2 and
5. That is, for a SAT formula with R variables v1, . . . , vR, and M
clauses c1, . . . , cM , we impose 2nv1+zv1−1 = 2nv2+zv2−1 =
· · · = 2nvR + zvR − 1 = 5 + zc1 = · · · = 5 + zcM . Define
µ = argmaxRi=1 nvi . Set zµ = 5, and set all other z values so
that all equalities hold. Observe that the resulting graph remains
polynomial in the size of the input.
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clause c has at least one true literal, the qubit state ac can
use the corresponding blue node to progress with no inter-
ference with other qubit states (from an overlapping variable
gadget). Thus, each gadget is solved in τ time steps, which
further implies that the instance α is solved in τ time steps.

If the QCC instance has a solution of τ time steps (that
is, an optimal solution), it follows all qubit states ac and qvi
are located at blue nodes at time 2d, according to Corol-
lary 1 and Lemma 4. Set to true literals corresponding to
blue nodes where qubit states ac are located at time 2d. This
ensures that all clauses in the SAT formula hold. In any so-
lution of τ steps, at time 2d, qubit states qv1 , . . . , q

v
nv

are ei-
ther all in Nv

1 , . . . , N
v
nv

, or all in P v
1 , . . . , P

v
nv

, according to
Corollary 1. This ensures the so-called Boolean consistency
of the variable v (i.e., either all positive literals are true and
all negative literals are false; or all positive literals are false
and all negative literals are true). The Boolean consistency
together with the fact that each clause is true result in a valid
solution to the SAT instance.

Corollary 2. MO-QCCX is NP-complete.

This result holds because the proof presented in this sec-
tion never infringes any crosstalk constraints.

Corollary 3. MO-QCC and MO-QCCX are NP-complete
even when all swap gates have the same duration.

We can easily adapt the proof for this extra condition, by
replacing a swap gate with the duration 2d with a chain of
two gates with the duration d each.

4 Conclusion and Future Work
Quantum circuit compilation is an important problem, with
a strong relevance to both quantum computing and com-
binatorial search. Despite this, no complexity analysis of
the problem has been available. In this paper, we have pro-
vided a first study of the problem hardness. We have for-
mulated a makespan optimization problem, based on QCC
on general graphs, and have proven that the problem is NP-
complete. The result holds even in the presence of crosstalk
constraints.

In future work we plan to investigate the problem hard-
ness under the additional condition that the graph is planar, a
common feature in current quantum hardware architectures.
In addition, we plan to study the existence of approximation
algorithms that return solutions with bounded suboptimality
guarantees.
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