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Abstract

This paper focuses on the stopping condition of A*. Tradi-
tionally, A* is described such that the goal test is done once
a node is chosen for expansion (A*-LATE). An alternative
way is to perform the goal test when a node is generated
(A*-EARLY). In this position paper we compare the two ap-
proaches from pedagogical and practical aspects and advo-
cate for teaching and using A*-EARLY.

1 Introduction
The focus of this paper is A* (Hart, Nilsson, and Raphael
1968) which is a prominent instantiation of the general best-
first search (denoted BFS) scheme. BFS seeds an open list
(denoted OPEN) with the start state. At each expansion cycle
the most promising node (best) from OPEN is popped and
its children are generated and inserted to OPEN while best is
moved to a closed list (denoted CLOSED). Instantiations of
BFS differ in their cost function f . A* orders nodes accord-
ing to f(n) = g(n)+h(n), where g(n) is the path cost from
the start to n and h(n) is an admissible heuristic estimation
of the cost from n to a goal. A* with an admissible heuristic
returns the optimal path and is optimally effective (expands
the necessary and sufficient set of nodes) under some condi-
tions (Dechter and Pearl 1985).

In order to halt, any search algorithm must apply a goal
test to recognize that a goal node is found. A goal test is done
either by checking whether a certain goal condition is satis-
fied or by comparing the node to the description of the goal.
This paper focuses on two approaches for when to apply the
goal test within the context of A*. The relatively common
approach delays the goal test to the step where a node is
chosen for expansion. Alternatively, the goal test can be per-
formed earlier when a node is generated. We compare these
two approaches pedagogically and practically. While there
are pros and and cons for each approach, we advocate for
teaching and using the early goal test approach which per-
forms the goal test when a node is generated. Even readers
who will still prefer the late goal test approach should hope-
fully benefit from reading this paper.
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Algorithm 1: A*-LATE

Input: (Start state s)
1 g(s)← 0; OPEN← ∅; CLOSED← ∅
2 Add s to OPEN with f(s) = h(s)
3 while (OPEN 6= ∅) do
4 best← ExtractMin(OPEN)
5 if GoalTest(best)==TRUE then
6 return the lowest-cost path found to best

7 Move best from OPEN to CLOSED
8 for every action A applicable on state best do
9 c← generate a state by applying A to best

10 gnew ← g(best) + cost(best, c)
11 if c in OPEN ∪ CLOSED then
12 if g(c) ≤ gnew then
13 continue (duplicate node, goto line 9)

14 Remove c from OPEN and CLOSED

15 g(c)← gnew

16 Insert c to OPEN with key f(c) = g(c) + h(c)

17 return No solution exists

2 The Two Variants of A*
2.1 A* with Late Goal Test
In general, the “textbook” definition of A* performs the goal
test when a node is chosen for expansion. We call this late
goal test and denote it by A*-LATE. A*-LATE halts if the
node chosen for expansion is the goal. At this stage we have
reached the goal via an optimal solution (whose cost is de-
noted by C∗) due to the following reasoning (the formal
proof is much longer): f(goal) = g(goal) is the minimal
f -value in OPEN. Thus, the cost of the current path to the
goal, g(goal), is smaller than or equal to all other possi-
ble paths to the goal as they all have lower bounds in OPEN
which are≥ g(goal). Pseudo code for A*-LATE is provided
in Algorithm 1. The goal test is performed at Line 5, after
choosing to expand a node. It is important to note that A*-
LATE does not need to perform a goal test for nodes with
h > 0, as such nodes are certainly not the goal.

2.2 A* with Early Goal Test
Another, less common implementation of A* is to apply the
goal test when a node is generated. We call this early goal
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Algorithm 2: A*-EARLY

Input: (Start state s)
1 U ←∞
2 g(s)← 0;
3 OPEN← ∅;
4 CLOSED← ∅
5 Add s to OPEN with f(s) = h(s)
6 while (OPEN 6= ∅ and fmin < U ) do
7 best← ExtractMin(OPEN)
8 Move best from OPEN to CLOSED
9 for every action A applicable on state best do

10 c← generate a state by applying A to best
11 gnew ← g(best) + cost(best, c)
12 if c in OPEN ∪ CLOSED then
13 if g(c) ≤ gnew then
14 continue (duplicate node, goto line 9)

15 Remove c from OPEN and CLOSED

16 if GoalTest(c)==TRUE then
17 if gnew < U then
18 U ← gnew

19 empty-open(U ) // optional.

20 g(c)← gnew

21 f(c) = g(c) + h(c)
22 if f(c) < U then
23 Insert c to OPEN with key f(c)

24 return U and the associated path

test and denote it by A*-EARLY. In this variant, we maintain
a variable U which stores the cost of the best solution found
so far — the incumbent solution. U is initially set to∞ and
is decreased every time a better solution is found for a newly
generated goal. A*-EARLY halts once there are no nodes in
OPEN with f < U , or equivalently when fmin>= U , where
fmin is the minimal f -value in OPEN. In this case, U = C∗

is returned as the cost of the optimal solution.
Pseudo code for A*-EARLY is provided in Algorithm 2.

The main loop ensures that there are nodes in OPEN with
f < U (Line 6). The goal test is performed when a node
is generated (Line 16) and U is updated if necessary (Line
18). It is easy to reason that A*-EARLY also returns the
cost of the optimal solution. When OPEN (which is always
a perimeter around the start state) does not contain any node
with f < U it means that U is optimal.

An enhancement for A*-EARLY is that newly generated
nodes with f ≥ U can be discarded and not be inserted
to OPEN (Line 22). These nodes will never be expanded
and we designate them here as surplus1. This enhancement
may save a significant amount of CPU time compared to
A*-LATE for not applying the insert operation on OPEN
(Line 23) for surplus nodes. This will also save a signifi-
cant amount of memory as such nodes will not be stored in
OPEN. Furthermore, when U is decreased when a better path
to the goal has been found, OPEN can optionally be cleared
from nodes with f ≥ U (Line 19). This might further save a

1This is a slightly different usage of this term which was coined
by (Goldenberg et al. 2014) to designate all nodes with f > C∗.

considerable amount of memory but might cost time.
A*-EARLY only needs to perform a goal test for nodes

with h = 0. Equivalently, a heuristic calculation should only
be done for non-goal nodes. Thus, A*-EARLY has the flexi-
bility to choose which of these operations to perform first.

2.3 Tie Breaking
A common tie breaking rule used by A* among nodes with
the same f -value is to prefer nodes with smaller h-values.
This rule is denoted by TBh. Another tie breaking rule
used by A* is to break ties in favor of the goal (denoted
by TBGoal). TBGoal is included by TBh if only the goal
may have h = 0. This might be a direct attribute of the
heuristic especially if zero edges are not allowed. An ex-
ample is the 15-Puzzle with Manhattan Distance. In other
settings, where non-goal nodes may have h = 0, or if TBh

is not used, TBGoal should be implemented by performing
the goal test on two or more nodes with the same g-values
and with h = 0. TBGoal is specifically needed for A*-
LATE. Assume that the goal was generated via the optimal
path (i.e., with f(goal) = C∗). Once fmin= C∗, TBGoal

assures that the goal will immediately be moved to the front
of OPEN and expanded right away. Nevertheless, omitting
TBGoal will only increase the running time but will not
affect the optimality of the solution returned. We note that
more advanced tie breaking rules exist (Asai and Fukunaga
2017), especially if 0-edges are allowed.

3 Comparison of the Two Variants
In this section we compare A*-LATE and A*-EARLY peda-
gogically and practically. There are pros and cons for both
but we will advocate for teaching and using A*-EARLY as
we believe that its advantages outweigh its disadvantages.

3.1 Order of Node Expansion
First, we show that A*-LATE coupled with TBGoal and A*-
EARLY are identical in their node expansions.

Claim 1: Both A*-LATE (with TBGoal) and A*-EARLY ex-
pand the same set of nodes and in the same order.

Proof: Their node expansion behavior is identical when
fmin< C∗. Similarly, when fmin becomes C∗, then their
node expansion behavior is identical if the goal node was
not yet generated with f = C∗. When the optimal goal
was generated with f = C∗ all that is needed is to clear
OPEN from all nodes with f < C∗. Indeed, both A*-LATE
and A*-EARLY next expand all nodes with f < C∗. At this
stage A*-EARLY immediately halts. By contrast, A*-LATE
inserted this goal node to OPEN. However, using TBGoal

this goal node will immediately move to the front of OPEN
and be chosen for expansion right away.2

2There are two options to count node expansions. If we incre-
ment the counter when a node is chosen for expansion, A*-LATE
will count one more node than A*-EARLY — the goal node. If in-
crementing the counter is delayed to when the children of the node
are being generated then A*-LATE and A*-EARLY are identical in
their node expansions. This was done in our experiments below.
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This means that both A*-EARLY and A*-LATE are im-
plementation variants of the same algorithm and are not fun-
damentally different. However, in the rest of this paper we
highlight the advantages of A*-EARLY over A*-LATE.

3.2 Using TBh and TBGoal

Both A*-LATE and A*-EARLY may optionally use TBh and
the are both equally affected positively when they use it.
However, A*-LATE has a disadvantage because it must use
TBGoal. Without TBGoal, A*-LATE might expand a signif-
icant number of nodes with f = C∗, even if the optimal goal
was generated with f = C∗, as it was not necessarily cho-
sen for expansion. By contrast, A*-EARLY does not need
to employ TBGoal because it will never expand nodes with
f = C∗ after the goal node is generated with g = C∗. This
is a great advantage of A*-EARLY in the pedagogical sense
— no need to teach and implement TBGoal. Furthermore, as
discussed above, in some settings non-goal nodes may also
have h = 0. In such cases, A*-LATE must perform some
kind of early goal test when it needs to employ TBGoal on
a generated node with h = 0. In these cases, A*-LATE does
not employ a pure late goal test strategy. Adding TBGoal

complicates the implementation of A*-LATE.

3.3 Pedagogical Aspects
We believe that A*-EARLY has pedagogical advantages over
A*-LATE. There are many optimization problems in com-
puter science where a solution with optimal cost/utility is
needed. Typical algorithms that find optimal solutions go
through the following four phases:
Phase 1: No solution yet. The algorithm did not yet find any
solution. The time was used in building partial solutions or
checking possibilities that did not yield a solution.
Phase 2: Suboptimal solution found. This phase starts af-
ter the first, possibly suboptimal, solution was found. The
algorithm keeps looking for better solutions. But, it has the
advantage over Phase 1 in the sense that there exists an in-
cumbent solution. Thus, it can prune/discard options that
certainly cannot improve the incumbent solution. It can also
return a solution if it is halted.
Phase 3: An optimal solution was found. Now the algo-

rithm has found the optimal solution but it has not yet proven
it. In this phase the algorithm needs to prove that the solu-
tion it found is optimal. In practice, the algorithm may not
know whether it is in Phase 2 or in Phase 3.
Phase 4: The optimal solution was proved. In this phase

the algorithm can halt and return the optimal solution.
Algorithms that have this structure have benefits because

they have an anytime behavior. They can be halted and return
a solution in any of the phases 2 – 4. Naturally, these solu-
tions improve over time. In Phase 2, a suboptimal solution
will be returned. In Phase 3, practically an optimal solution
will be returned but without a guarantee on its optimality. In
Phase 4, an optimal solution is returned and is guaranteed.

A*-EARLY falls into this general structure. When the first
solution was found, A*-EARLY enters Phase 2. From now
on, it can return a solution and (optionally) prune surplus

nodes (with f ≥ U ). During Phase 3, A*-EARLY will practi-
cally return the optimal solution. Indeed, the user will not get
a guarantee on optimally but will have it in his hands. This
is a great advantage because phase 3 might be very long.

By contrast, A*-LATE only has two phases. In the first
phase, no solution was recognized. In the second phase, the
optimal solution was found and returned. A*-LATE will not
be able to return a solution if it is halted before finishing the
search. On the other hand, the pseudo code of A*-LATE is
shorter and might be seen as more elegant, exactly because it
only has two phases. Thus, some people might find it easier
to teach or understand. Such people probably omit, or are
not aware of the TBGoal issue raised above.

3.4 Memory Usage
A*-EARLY has a straightforward advantage in its memory
usage over A*-LATE. That is, once the goal has been found
with f = U , all new surplus nodes with f ≥ U can be
discarded instead of being inserted to OPEN. One might also
iterate over OPEN and throw away such nodes too, freeing
memory. By contrast, A*-LATE will add all these surplus
nodes to OPEN which will increase the size of OPEN.

3.5 Time Overhead
A*-EARLY has two advantages over A*-LATE with regards
to the time overhead per node. First, A*-EARLY performs
fewer insert operations than A*-LATE as it does not insert
the surplus nodes. If OPEN is implemented as a priority
queue then insert might be relatively time consuming as it
is logarithmic in the size of OPEN. Second, in many cases
smaller OPEN has direct impact on the CPU overhead both
because insert is logarithmic in the size of OPEN but also
because of the memory access time which might be faster if
OPEN is smaller, e.g., if it can be stored in cache etc.

By contrast, the tradeoff is that A*-LATE may perform
fewer goal tests than A*-EARLY. If the goal-test operation
is very expensive and inserting nodes to OPEN is cheap (both
in time and memory) then A*-LATE has benefits over A*-
EARLY. Nevertheless, the goal test is usually easy to imple-
ment. Also, as described above, it is not needed for nodes
with h > 0 (for both A*-EARLY and A*-LATE). Thus, its
time overhead is usually not a dominating factor.

3.6 Breadth-First Search
Breadth-first search (denoted here by BRFS) is a degener-
ate form of best-first search (BFS). On unit edge-cost do-
mains, at all times BRFS has at most two distinct f -values in
OPEN: f = k and f = k+1 for some integer k. In addition,
when a node with f = k is expanded, all its children have
f = k + 1. Thus, BRFS might use a FIFO queue for OPEN
instead of a priority queue. Furthermore, it is very easy to
recognize, even by novice implementers, that BRFS can halt
when a goal node is generated. That is, an efficient imple-
mentation of BRFS (probably recognized and employed by
most implementers) performs early goal test and halts right
away. But, if A*-LATE is taught to students then the instruc-
tor needs to teach the students that performing early goal test
is a nice enhancement over A* that exists for BRFS. Some
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instructors might not even mention it and leave it to the good
implementation capabilities of their students. By contrast, if
A*-EARLY is taught, then there is absolutely no difference
between BRFS and BFS in that regards.

In fact, the common AI textbook : “Artificial Intelligence,
a Modern Approach”, 3rd Edition (Russell and Norvig 2010)
has this pitfall. It introduces two pseudo codes for general
BFS: Tree-Search for trees (no cycles) and Graph-Search
for graphs (cycles exist). In these pseudo codes, late goal
test is implemented. Then, a separate pseudo code with early
goal test is given for BRFS. If A*-EARLY is taught then no
pseudo code will be even needed for BRFS.

3.7 Other Algorithms with Early Goal Test

Where to perform the goal test might be seen as an im-
plementation detail. However, many search algorithms can
greatly benefit from using early goal test. Indeed, some pa-
pers on search algorithms specificality mention that they
used early goal test either as an enhancement trick or as an
implementation detail. We cover such algorithms now.

First, as explained above, BRFS should exclusively use
early goal test. In addition, IDA* can also employ early goal
test. Once a goal node is generated with f = U , IDA* can
halt as soon as all IDA* iterations with thresholds smaller
than U are finished.

Potential Search (PTS) (Stern et al. 2014) which is an al-
gorithm for bounded cost search inherently uses early goal
test. Similarly, adapting A* to maximization problems inher-
ently uses early goal test in its structure (Stern et al. 2015).

Early goal test in a bidirectional search checks whether
a generated node on one side of the search also appears in
OPEN of the other side. Using early goal test in bidirectional
search algorithms is specifically beneficial because it allows
them to prune faster pairs of nodes that will certainly not
improve the incumbent solution. Indeed, many of the early
bidirectional search algorithms (see (Holte et al. 2017) for a
survey) and certainly all the recent ones (Barker and Korf
2015; Holte et al. 2017; Chen et al. 2017; Shaham et al.
2017) use early goal test.

Focal Search is a general scheme for search algorithms.
Focal searches maintain a list of nodes FOCAL ⊆ OPEN
meeting special properties. Most Focal Search algorithms
aim to find a goal node within FOCAL.3 Certainly, employ-
ing early goal test in Focal Search has a great advantage
over late goal test. Focal Search can halt as soon a a goal
node is generated and is within FOCAL. While some pa-
pers in the Focal Search family mention early goal test in
their descriptions, e.g., (Thayer and Ruml 2011; Hansen and
Zhou 2007), others leave it vague (Likhachev et al. 2008)
or describe late goal test (Gilon, Felner, and Stern 2016;
Thayer and Ruml 2008; Ebendt and Drechsler 2009), even
though they might have implemented early goal test in the
experiments without specifically writing it.

3A* can be described as a Focal Search where FOCAL includes
all node with f =fmin.

Expanded Generated Surplus Inserted
15 puzzle 1,910,009 4,108,662 2,198,653 1,275,218
10 x 10 43 58 15 2
50 x 50 1215 1299 84 3

100 x 100 4785 4956 171 6

Table 1: Experiments on weighted graphs

3.8 Cases Where They are Identical

In some cases there will be no practical difference between
A*-LATE and A*-EARLY. In such cases, when the goal is
generated for the first time it is through the optimal path
(with f(goal) = C∗) directly from a parent which also has
f = C∗ (cases with this last attribute are called pathological
(Dechter and Pearl 1985; Goldenberg et al. 2013)). In such
cases, both A*-LATE and A*-EARLY will halt right after the
generation of the first goal because at this time fmin= C∗

and surplus nodes will never be generated.
Many of the unit edge-cost domains have this behavior.

For example, consider the 15-puzzle with the Manhattan
Distance heuristic where the goal of the blank is at the top
left corner. The last move before reaching the goal is to
either move tile 1 from the top left corner to the right or
move tile 4 from that corner down. In both cases, the Man-
hattan Distance of the parent is 1 and therefore the parent
will also have f = C∗. Nevertheless, there are no circum-
stances where A*-LATE will have practical advantages over
A*-EARLY.

4 Experiments

To show the practical benefits of A*-EARLY we performed a
small number of experiments with A*-LATE and A*-EARLY
on two domains: (1) The heavy 15-puzzle (Thayer and Ruml
2011; Gilon, Felner, and Stern 2016) which is a weighted
graph where moving tile #X costs X . (2) Square grids
where the cost of an edge was uniformly randomized to be
an integer between 1 and 10. The unweighed Manhattan Dis-
tance heuristic was used for both domains. Table 1 shows the
results averaged over 50 random instances for each domain.
We present the number of expanded nodes, the number of
generated nodes and the number of surplus nodes which is
calculated by Surplus = Generated − Expanded. A*-
LATE inserts all the generated nodes including all surplus
nodes into OPEN. A*-EARLY only inserts some of the sur-
plus nodes and skips others. We also report the number of
surplus nodes that A*-EARLY inserted into OPEN in the
Inserted column. The number of states in the 15 puzzle
grow exponentially with the depth and the number of sur-
plus nodes was relatively large. Of them, only 58% were in-
serted by A*-EARLY and the other were skipped. The grids
grow linearly and the number of surplus nodes is relatively
smaller. However, the saving of A*-EARLY was more dra-
matic here as it never inserted more than 10% of the surplus
nodes into OPEN. The decrease in CPU time was of up to
10% for some instances which is naturally more modest.
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5 Conclusions
In this paper we highlighted the advantages of A*-EARLY
over A*-LATE. Its pedagogical structure is more general and
it may have practical advantages in both memory and time
for many cases. Under no circumstances A*-EARLY will be
worse than A*-LATE. By contrast, A*-LATE might be seen
as simpler and more elegant by some people (although it
must use the TBGoal rule). In addition, there are many cases
(e.g., in many unit edge cost domains) where A*-LATE and
A*-EARLY are identical. Which variant to teach and to im-
plement is left for each one to choose. But, we encourage
instructors and implementers to only use A*-EARLY as the
benefits outweigh the disadvantages in our opinion.
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