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Abstract

Algorithm configuration tools have been successfully used to
speed up local search satisfiability (SAT) solvers and other
search algorithms by orders of magnitude. In this paper, we
show that such tools are also very useful for generating hard
SAT formulas with a planted solution, which is useful for
benchmarking SAT solving algorithms and also has crypto-
graphic applications. Our experiments with state-of-the-art
local search SAT solvers show that by using this approach
we can randomly generate satisfiable formulas that are con-
siderably harder than uniform random formulas of the same
size from the phase-transition region or formulas generated
by state-of-the-art approaches. Additionally, we show how to
generate small satisfiable formulas that are hard to solve by
CDCL solvers.

Introduction

Algorithm configuration deals with automated tuning of free
parameters that configure generic problem solvers (Hutter
et al. 2009). In Automated Planning, algorithm configura-
tion techniques were exploited for enhancing performance
of planners such as LPG (Vallati et al. 2013) or FastDown-
ward (Fawcett et al. 2011), or for configuring domain mod-
els by reordering their elements (actions, predicates) (Val-
lati et al. 2015). In boolean satisfiability (SAT), several
state-of-the-art SAT solvers have been shown to signifi-
cantly benefit from automated tuning (Hutter et al. 2009;
Hutter, Hoos, and Leyton-Brown 2011)

Besides solving SAT formulas, research efforts also fo-
cus on generating formulas that are challenging for state-
of-the-art SAT solvers. One of the most popular class of
generated SAT formulas is uniform random 3SAT formu-
las with a variable-clause ratio corresponding to the phase-
transition threshold (Mitchell, Selman, and Levesque 1992;
Gent and Walsh 1994). This ratio causes that half of the gen-
erated formulas is satisfiable. These formulas are considered
very hard to solve relative to their size and are often used to
evaluate the performance of SAT solvers, in particular local
search SAT solvers (Selman et al. 1992).

More advanced methods (e.g. (Barthel et al. 2002)) can
generate even harder instances having the same or smaller
size. On top of that the methods can guarantee to always
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generate a satisfiable instance and even the possibility to
hide a predefined solution in the formula (Liu, Luo, and Yue
2015). Generators of hard satisfiable formulas with a prede-
fined solution can also be used in cryptography as one-way
functions (Papadimitriou 2003) (for example a password can
be encoded as a solution, which is easy to verify but hard to
find). Let us note that this is just a theoretical potential ap-
plication and there are better ways of implementing one-way
functions in practice.

In this paper, we describe a new method for generating
hard satisfiable formulas with a predefined solution by ex-
ploiting algorithm configuration techniques. Specifically, we
focus on 3SAT formulas, although our method can easily
extended on formulas with arbitrary clause lengths. We con-
duct an empirical evaluation to demonstrate the hardness of
the generated formulas for both CDCL and local-search SAT
solvers. We show that we can generate instances especially
difficult for stochastic local search algorithms (Selman et al.
1992). In particular, we generated satisfiable 3SAT formulas
with as few as 60 variables that cannot be solved by state-
of-the-art local search SAT solvers such as ProbSAT (Balint
and Schoning 2012) or Dimetheus (Gableske 2013) in 10
minutes.

Preliminaries

A Boolean variable is a variable whose domain consists of
two values, True and False. By a literal we mean either z
(a positive literal) or T (a negative literal), where x is a
Boolean variable and  its negation. A clause is a disjunction
(OR) of literals. A conjunctive normal form (CNF) formula
is a conjunction (AND) of clauses. A clause can be also in-
terpreted as a set of literals and a formula as a set of clauses.
A 3SAT formula is a formula where each clause has exactly
3 literals. A (truth) assignment ¢ of a formula F' assigns a
(truth) value to F’s variables. An assignment ¢ satisfies a
literal  (T) if it assigns True (False) to the variable . An
assignment ¢ satisfies a clause if it satisfies at least one of
its literals. Finally, ¢ satisfies a CNF formula if it satisfies all
its clauses. A formula F' is said to be satisfiable if there is an
assignment ¢ that satisfies F'. Such an assignment is called
a satisfying assignment. The satisfiability problem (SAT) is
to find a satisfying assignment of a given CNF formula or
determine that such an assignment does not exist (i.e., the
formula is unsatisfiable).



cdc-generate (vars, ¢, p1, pa, P3, T)
F:=0
while |F| < r % vars do
C = generateRandom3Clause(vars)
1 = numberOfSatisfiedLiterals(C,¢)
if : > 0 then
with probability p; do F = F U {C}
return F

CDCO
CDC1
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CDhC4
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CDC6

Figure 1: Pseudo-code of a CDC algorithm which has a
set of variables, their truth assignment, and parameters
p1,P2,ps and 7 as an input. It produces a 3SAT formula
from the given set of variables that is satisfied by the given
assignment.

A SAT solver accepts a CNF formula as an input and re-
turns its satisfying assignment if the formula is satisfiable,
or returns that the formula is unsatisfiable otherwise. SAT
solvers can be divided into two main categories:

e Local Search Solvers implement an incomplete stochas-
tic local search algorithm such as walksat (Selman et al.
1993). These solvers usually perform well on randomly
generated satisfiable formulas.

e CDCL Solvers implement the Conflict Driven Clause
Learning (CDCL) algorithm (Marques-Silva and Sakallah
1999). These solvers perform well on structured problems
such as those coming from real-world applications.

Related Work

A commonly used method for generating hard satisfiable
formulas (in SAT competitions for example) is to generate
uniform random formulas from the SAT phase-transition re-
gion (Gent and Walsh 1994) and filter out those deemed
as unsatisfiable (Kullmann 2006)! However, such methods
cannot generate a formula with a predefined solution and
the formulas need to be solved in order to guarantee their
satisfiability.

A straightforward approach to generate a formula with a
given satisfying assignment ¢ is to generate random clauses
while filtering out those in which ¢ is not satisfied until
we reach the desired number of clauses (Achlioptas, Jia,
and Moore 2005). This approach, called the 1-hidden algo-
rithm, has the disadvantage that generated formulas are easy
to solve, especially by local search solvers (Achlioptas, Jia,
and Moore 2005). The hardness can be increased by hiding 2
or more solutions (satisfying assignments) (Achlioptas, Jia,
and Moore 2005).

Another approach is to use the clause distribution con-
trol (CDC) algorithm (Barthel et al. 2002). The CDC algo-
rithm for generating k-SAT formulas has k + 1 parameters
0 < p1,...,pr < land r € R. The parameter r represents
the clause/variable ratio and each p; is the probability that

!The filtering is usually done by running a local search SAT
solver with a large time limit and removing formulas it cannot
solve. This has the obvious problem that only formulas that the
solver can solve are selected as benchmarks (which are then mostly
used to evaluate other solvers).
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a clause which has exactly ¢ satisfied literals under a given
assignment ¢ gets into the formula. A variant of the CDC al-
gorithm for 3SAT is depicted in Figure 1. Implementations
of the CDC algorithm define the values of p; and r differ-
ently. For example the g-hidden algorithm defines p; = ¢
for a parameter ¢ (Jia, Moore, and Strain 2005) and the gen-
erator of Barthel et al. (2002) uses a diluted spin-glass model
to theoretically compute good values of p;. A more detailed
overview of algorithms for generating random formulas with
hidden solutions can be found in a recent paper by Liu, Luo,
and Yue (2015).

Our Approach

Our method is based on the CDC algorithm, however, in
contrast to existing approaches (Barthel et al. 2002; Jia,
Moore, and Strain 2005; Liu, Luo, and Yue 2015) the values
of the parameters p; and r are tuned by exploiting automatic
algorithm configuration tools.

Contrary to improving performance of SAT solvers (Hut-
ter et al. 2009), we use algorithm configuration tools for the
opposite purpose — to slow down SAT solvers (by generating
hard benchmarks). For our experiments we use the 2.10.03
version of the parameter optimization tool SMAC (Hutter,
Hoos, and Leyton-Brown 2011).

Obtaining The CDC Parameters

In order to use SMAC, we developed a routine, outlined in
Figure 2, that evaluates a given parameter configuration for
a particular solver. The task is, in essence, to determine how
many formulas can be solved until they become too hard to
solve. The evaluation routine relies on the fact that formulas
get harder with a larger size (more variables and clauses) for
any given configuration.

Starting from 20 we incrementally increase the number of
variables by 5 per iteration until 600. In each iteration, we
generate 8§ formulas using the CDC algorithm (Figure 1),
where the planted solution is generated randomly.. These 8
formulas are then solved by a SAT solver (with a time limit
of 1 minute). The solving process is parallelized?. If half (4)
or more formulas are solved then we continue to the next
iteration (unless we reached the limit of 600 variables) oth-
erwise we return the total number of solved formulas so far
as the score of this configuration. Lower score means the
configuration gives harder formulas with smaller number of
variables. Hence, such a configuration is better for our pur-
poses. The SMAC tool is then used to find the values of p;
and r while minimizing the score.

We used four representative state-of-the-art SAT solvers
for the parameter configuration process — two local
search solvers: ProbSAT (Balint and Schoning 2012) (ver-
sion SC13.2) and Dimetheus (Gableske 2013) (version
2.100.994) and two CDCL solvers: Lingeling (Biere 2013)
(version bal) and Glucose (Audemard and Simon 2009) (ver-
sion 4.0). We created seven optimization scenarios — one
for each solver individually and three that combined all four
solvers (the sum of scores was minimized). Two of the com-
bined optimization scenarios optimize the parameters ac-

2Each core can accommodate one solver-benchmark pair.



evaluate-configuration (p1, p2, p3, )

SCO score :=0
sc1 for i := 20 to 600 step 5 do
sc2 solved : =0

sc3 repeat 8 times:

vars := generateVars(i)

¢ := generateAssigment(vars)

F := cdc-generate(vars, ¢, p1, p2, p3,T)
7 if the solver solves F'in 1 minute

then solved := solved + 1

score := score + solved

if solved < 4 then break
return score

sC4
SC5
SC6

S

Q

sSC8
sC9

SC10

Figure 2: Pseudo-code of a configuration evaluation algo-
rithm which has 4 inputs — p1, p2, p3 and r. Its aim is to esti-
mate the size of the largest formula that can be solved under
one minute for a given configuration using a particular SAT
solver.

cording to Barthel et al.( 2002) and Q-Hidden approach (Jia,
Moore, and Strain 2005) (more details below). The SMAC
tool was given 15 hours to find the best parameter values in
each scenario. SMAC was run on computers with two Octa-
Core Intel Xeon E5-2670 2.6 GHz processors and 64GB of
RAM.

The parameter values for the configuration of Barthel et
al.( 2002) were chosen according to their specification:

r > 4.25

0.077 < p; <0.25,
p2=(1—4p1)/6
p3 = (1+2p1)/6

ey

For the “Combination Barthel” configuration, using auto-
matic configuration we obtained only the values of p; and r
and then calculated p, and ps3 according to the above equa-
tions. For the ”Combination Q-Hidden” configuration, we
obtained the values of ¢ and r using automatic configuration
and then calculated pq, p» and ps such that p; = ¢*.

Table 1 summarizes the values of p; and r obtained
by our configuration approach and compares them with
the values used in previous works (Barthel et al. 2002;
Jia, Moore, and Strain 2005). Since Barthel et al.( 2002)
specify the range of values for p; and r (as shown above),
we needed to pick concrete values, so we selected 4.3 for
r and 0.163 for p; since it is exactly in the middle of the
(0.077,0.25) range (p2 and p3 are calculated from p;). For
the Q-Hidden configuration we used ¢ = 0.3 and r = 5.5
because these values were also used in the experimental sec-
tion of the original paper (Jia, Moore, and Strain 2005). We
did not include 1-Hidden and 2-Hidden formulas (Achliop-
tas, Jia, and Moore 2005) in our evaluation since the Q-
Hidden formulas (that we included) are reported to be much
harder (Jia, Moore, and Strain 2005)
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Hardness of The Generated Formulas

To evaluate the hardness of formulas generated by using
our parameter configuration approaches we ran experiments
with the already mentioned four state-of-the-art SAT solvers
— ProbSAT, Dimetheus, Lingeling and Glucose (same ver-
sions as used for the parameter optimization).

For each of the nine configurations listed in Ta-
ble 1 we generated 10 benchmark formulas for
each of the following sizes (number of variables):
50, 60, ..., 290, 300, 320, 340, . . ., 580, 600. Addition-
ally, we generated random “phase-transition” 3SAT
formulas of the same sizes. We will refer to a set of 10
benchmark formulas of a particular size generated by using
a particular configuration as a group of benchmarks.

The evaluation was done on computers with two Octa-
Core Intel Xeon E5-2670 2.6 GHz processors (16 cores in
total) and 64GB of RAM. The benchmark formulas were run
in parallel (running 16 solver-benchmark pairs at the same
time) with a time limit of 10 minutes per each.

The results of our experimental evaluation are summa-
rized in Tables 2 and 3. Taking a closer look on the results
we can make several interesting observations:

e The uniform and Barthel et. al configurations generate
relatively hard instances for the CDCL solvers, however,
they seem to be easy for the local search solvers.

e The Q-Hidden approach gives reasonably hard instances
for the local search solvers.

e The ProbSAT, Dimetheus, Combination and Combination
Q-hidden configurations yield hard instances for the local
search solvers. Only a few instances with more than 100
variables are solved despite the fact that at SAT competi-
tions these solvers routinely solve uniform random 3SAT
instances from the phase-transition region with thousands
of variables.

e The Lingeling and Combination Barthel configurations
yield instances that are similarly hard for all the solvers.

In summary, our approach can generate hard SAT formu-
las, especially for the local search solvers, and therefore it
might be a good candidate for being used for cryptographic
applications.

Tuning a Solver on the Generated Formulas

An interesting question is whether a SAT solver can be tuned
(using an algorithm configuration tool) to perform well on
formulas generated by our approach such that they are hard
for that solver.

In the case, that the solver can be automatically tuned to
perform well on the benchmarks tuned to be hard for that
specific solver, it would be interesting to know what happens
if we iterate the process of solver and benchmark generator
tuning. The question is whether (and how soon) we arrive at
a fixed point (where the solver and generator cannot be im-
proved anymore) or whether the process does not converge.

The answers to the question depend on the used solver
and the degree of its configurability. We run this experiment
with the SAT solver Spear (Hutter et al. 2007), since it is



Configuration P1 P2 P3 r
ProbSAT config. 0.996 0.038 0.168 7.821
Dimetheus config. 0.855 0.063 0.384 5.146
Lingeling config. 0.414 0.028 0.503 4.410
Glucose config. 0.218 0.111 0.295 4.705
Combination 0.785 0.030 0.278 6.227
Combination Barthel 0.242 0.005 0.247 4.298
Combination Q-Hidden 0.360 0.130 0.047 5.699
Barthel et al.( 2002) 0.163 0.057 0.221 4.300
Q-Hidden (Jia, Moore, and Strain 2005) 0.300 0.090 0.027 5.500

Table 1: The values of the p; and r parameters for the CDC algorithm evaluated in this paper. The first seven configurations

come from our automatic configuration approach.

Number of Solved Instances (out of 410) Size of Largest Solved Formula (Max. 600)

Benchmark Category | ProbSAT Dimetheus Lingeling Glucose || ProbSAT Dimetheus Lingeling Glucose
ProbSAT config. 2 88 409 410 80 540 600 600
Dimetheus config. 52 46 345 391 170 170 600 600
Lingeling config. 245 245 289 293 600 600 420 400
glucose config. 410 410 310 293 600 600 460 420
Combination 24 31 392 410 80 100 600 600
Combination Barthel 218 222 288 301 600 600 460 460
Combination Q-Hidden 51 47 381 410 230 230 600 600
Uniform 3SAT 410 410 294 284 600 600 480 440
Barthel et. al 409 409 333 307 600 600 580 500
Q-Hidden 142 144 365 406 600 600 600 600

Table 2: The total number of solved instances and the size (the number of variables) of the largest solved formula for each

benchmark category and solver.

a highly configurable SAT solver, which has been used to
demonstrate the strength of the SMAC tool and the auto-
matic algorithm configuration technique in general (Hutter,
Hoos, and Leyton-Brown 2011). The available distribution
of the SMAC tool contains a Spear configuration scenario
as one of the examples, which considers 26 parameters. We
utilized this scenario for our experiments while replacing the
testing and training instances by our own benchmarks.

The experiment was performed as follows. Firstly, we
used our approach to optimize the parameters of the CDC
algorithm against the default configuration of Spear. Then,
we generated 41 test and 41 training instances of different
sizes. After that, Spear was tuned using these instances. Both
tuning phases were run with a timeout of 15 hours using the
same hardware configuration as in the other experiments.

The performance of the default Spear and tuned Spear on
the generated instances was evaluated in the same way as for
the other experiments. We observed a relatively small im-
provement for tuned Spear, 289 solved instances instead of
279 (an improvement of 3.5%). We consider this improve-
ment not significant enough to continue the iteration pro-
cess (tuning of the CDC algorithm and tuning of Spear) and
thus we conclude that Spear cannot be satisfyingly tuned
to perform well on the benchmarks generated for it by our
approach. Noteworthy, such results are preliminary and the
outcome might be different for other solvers.
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Conclusion

In this paper, we showed that the CDC algorithm used for
generating challenging SAT formulas can be automatically
configured to generate SAT formulas with a planted solution
that are small in size and very hard for existing state-of-the-
art SAT solvers. Besides benchmarking purposes, generating
challenging SAT formulas with a planted solution is useful
in cryptographic applications. The conducted experiments
indicate that exploiting algorithm configuration approaches
for configuring parameters for the CDC algorithm can gen-
erate harder formulas than the existing approaches.

The proposed approach is extendable to k-SAT (with
k > 3) formula generation. We plan to investigate for which
k we can generate the smallest hard formulas for various
kinds of solvers. A theoretical investigation of why the pa-
rameter values found by automatic configuration approaches
produce such hard instances would be also beneficial.

The introduced benchmark generator has been used in the
last three International SAT Competitions (SAT Race 2015,
SAT Competition 2016 and SAT Competition 2017)?.
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Size of Hardest Solved Group (Max. 600)

Benchmark Category ProbSAT Dimetheus Lingeling Glucose
ProbSAT config. 0 500 600 600
Dimetheus config. 90 90 480 600
Lingeling config. 320 320 340 360
Glucose config. 600 600 400 360
Combination 70 70 600 600
Combination Barthel 560 560 360 380
Combination Q-Hidden 90 90 600 600
Uniform 3SAT 600 600 360 340
Barthel et. al 600 600 460 400
Q-Hidden 270 270 600 600

Table 3: The number of variables in the hardest (containing the highest number of variables) solved group of benchmarks. Each
group contains 10 instances of the same size and category. A group is considered to be solved if at least 5 instances are solved

under 10 minutes.
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