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Abstract

The 2k neighborhood has been recently proposed as an al-
ternative to optimal any-angle path planning over grids. Even
though it has been observed empirically that the quality of
solutions approaches the cost of an optimal any-angle path
as k is increased, no theoretical bounds were known. In this
paper we study the ratio between the solutions obtained by
an any-angle path and the optimal path in the 2k neighbor-
hood. We derive a suboptimality bound, as a function of k,
that generalizes previously known bounds for the 4- and 8-
connected grids. We analyze two cases: when vertices of the
search graph are placed (1) at the corners of grid cells, and (2)
when they are located at their centers. For case (1) we obtain
a suboptimality bound of 1 + 1

8k2 +O
(

1
k3

)
, which is tight;

for (2), however, worst-case suboptimality is a fixed value,
for every k ≥ 3. Our results strongly suggests that vertices
need to be placed in corners in order to obtain near-optimal
solutions. In an empirical analysis, we compare theoretical
and experimental suboptimality.

Introduction
Grid path planning is an old AI problem whose applications
range from robotics to videogames. It is an alternative to
any-angle path planning, where the angles of moves are not
restricted and thus the agent does not move discretely be-
tween positions in the grid.

Grid path planning is, nevertheless, a very well un-
derstood technique, being easier to implement than any-
angle search. Motivated by this, Rivera, Hernández, and
Baier (2017) recently introduced the 2k-neighborhoods
which generalize the traditionally used 4- and 8-connected
grids, by extending them with more moves—indeed, 2k

moves, where k ≥ 2 is a parameter. As more moves are
available, optimal paths under these neighborhoods look
similar to any-angle paths.

2k path planning is practical. Indeed, many grid path
planning techniques seem to be adaptable to 2k neighbor-
hoods. For example, Rivera, Hernández, and Baier (2017)
showed that canonical orderings (Harabor and Grastien
2011; Sturtevant and Rabin 2016) can be easily adapted
to 2k-neighborhoods, allowing an implementation of an A*
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planner that scales well with k and whose time performance
is competitive with any-angle planners like Theta* (Daniel
et al. 2010) and Anya (Harabor et al. 2016). Furthermore,
Hormazábal et al. (2017) showed that the subgoal graph
technique of Uras, Koenig, and Hernández (2013) can be
adapted to 2k-neighborhoods, resulting in a very fast nearly
any-angle path planner.

Paths obtained with discrete neighborhoods are often sub-
optimal with respect to any-angle optimal paths. The subop-
timality of a neighborhood is the worst-case ratio between
the cost of an optimal path found under such a neighborhood
and the cost of an optimal any-angle path. It is known that
suboptimality is bounded on 4- and 8-neighbor connectiv-
ity (Nash 2012; Bailey et al. 2011). Indeed, for 4-connected
grids paths can be a factor of 6/(2 +

√
2) ≈ 1.7573 away

from optimal, and a factor of
√

4− 2
√

2 ≈ 1.0824 for 8-
connected grids paths. Nevertheless, until now, no bounds
were known for k greater than 3.

In this paper we derive suboptimality bounds for 2k-
neighborhoods. Following Bailey et al. (2011), we study
two grid path planning settings: (1) when the vertices of the
search graph are placed at the corners of grid cells, and (2)
when the vertices are placed at the centers of the cells. For
setting 1, our bound is a function of k that asymptotically de-
creases quadratically towards 1 as k increases. In addition,
when we choose k = 2 or k = 3 we obtain the same bounds
found by Bailey et al. (2011). For setting 2, we show that
increasing k does not improve the tight worst-case bound of
3(
√

2 − 1) shown by Bailey et al. (2011) to be inherent to
8-connected grids; this suggests that grid path planning over
2k in this setting may not yield best results in practice. Fur-
thermore, we carry out an empirical analysis in which we
show that the empirical maximum and average suboptimal-
ity approaches the theoretical bound as k increases.

In the rest of the paper we first introduce some back-
ground material and present our main results. Then we prove
our main results for grid without obstacles, and in a posterior
section we extend those results for a general case. We finish
our paper by briefly describing our empirical findings.

Preliminaries
In this section we review the basics of grid path planning
and introduce the most commonly used neighborhoods.
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Pairs
Throughout the paper we use ordered pairs to denote moves,
points, search-graph vertices, and cells of a grid. We inter-
pret a pair (x, y) as a two-dimensional vector and use bold-
face to denote them. As such, if v = (x, y) we say that
the X-component of v is x and that the Y-component of
v is y. Given a pair v, we use the notation vx and vy , re-
spectively, to denote the X- and Y-component of v. Also
(x, y) + (x′, y′) = (x + x′, y + y′) and c(x, y) = (cx, cy).
In addition, we define ‖(x, y)‖ as

√
x2 + y2.

Given two pairs u and v, we define det(u,v) as the de-
terminant of the matrix whose columns are u and v, i.e.:

det(u,v) =

∣∣∣∣uxvx

uyvy

∣∣∣∣ = uxvy − uyvx. (1)

It is a well-known fact that det(u,v) = ‖u‖‖v‖ sin(α),
where α is the angle between u and v (starting from u mov-
ing anticlockwise to v). A pair u is contained by moves v
and w iif there exist non-negative numbers α, and β, such
that u = αv + βw.

We use standard notation for closed and open real inter-
vals; specifically, [a, b] = {x ∈ R | a ≤ x ≤ b} and
]a, b[ = {x ∈ R | a < x < b}.

Grid Path Planning
An N × M grid is a tuple (C,O), where C = {(i, j) ∈
N × N | 0 ≤ i < N, 0 ≤ j < M} is a set of cells and
O ⊆ C is a set of obstacles. A grid (C,O) is obstacle-free if
O = ∅. Two cells are adjacent iff one can be obtained from
the other by adding (1, 0) or (0, 1).

A search graph can be defined for every grid (C,O). To
define its vertices, we choose from among two options:

1. Vertices are associated with corners of grid cells. Then,
the set of vertices of the search graph for grid (C,O) is
{c + (`, `′) | c ∈ C, `, `′ ∈ {0, 1}}.

2. Vertices are associated with the centers of grid cells. In
this case, the set of vertices for grid (C,O) is simply C.
Given a cell c we define its center, denoted as center(c)

as c+(1
2 ,

1
2 ) if vertices are associated with corners. We state

the following definitions independent of which association
we use between vertices and corners/centers.

1. The corners of a cell c is the set of points with the form
center(c) + µ( 1

2 , 0) + ν(0, 12 ), where µ, ν ∈ {−1, 1}.
2. The border of a cell c is the set of points with the form

center(c) + µ( 1
2 , 0) + ν(0, 12 ), where µ, ν ∈ [−1, 1], and

at least one among µ, ν is equal to 1 or −1.
3. The interior of a cell c is the set of points with the form

center(c) + µ( 1
2 , 0) + ν(0, 12 ), where µ, ν ∈ ]−1, 1[.

A move m is a pair. The set of points visited when apply-
ing a move m in point p are those with the form p + λm,
with λ ∈ [0, 1]. A move m is applicable in vertex v iff:
(APP1) v + m is a vertex of the search graph, and
(APP2) the points visited when applying m in p do not con-

tain:
(a) any point in the interior of an obstacle cell.

�

b d

c

Figure 1: a and b are legal moves. c is not applicable because
it violates (APP2)(a). d is not applicable because it violates
(APP2)(b).

k = 2 k = 3 k = 4 k = 5 k = 6

Figure 2: The 4-, 8-, 16-, 32-, and 64- neighborhoods.

(b) any point in the intersection of the borders of two
adjacent obstacle cells that is not a corner of any
of them.

See Figure 1 for a graphical example of applicable and
non-applicable moves.

In grid path planning moves are not arbitrary pairs: they
are taken from a neighborhood. The 4- and 8-connected
neighborhoods are:

N4 = {(i, j) | i, j ∈ {−1, 0, 1}, |i|+ |j| = 1},
N8 = {(i, j) | i, j ∈ {−1, 0, 1}, |i|+ |j| > 0}.

The set of successors of a vertex u is defined as
SuccN (u) = {m + u | m ∈ N and m is applicable in u}.
A path over N from u to v is a sequence v1v2 · · ·vn such
that v1 = u, vn = v, and for every i ∈ {1, . . . , n − 1} it
holds that vi+1 ∈ SuccN (vi). A path v1v2 · · ·vn is gener-
ated by applying the sequence of moves m1m2 · · ·mn−1
in v iff v = v1 and mi = vi+1 − vi, for every i ∈
{1, . . . , n−1}. A path v1 · · ·vn generated by m1 · · ·mn−1
penetrates a cell c, iff a point in the interior of c is visited
when mi is applied in vi, for some i ∈ {0, . . . , n− 1}.

The cost of a path σ = v1 · · ·vn is c(σ) =∑n−1
i=1 ‖vi+1 − vi‖. A path σ over N from u to v is op-

timal if for every path σ′ over N from u to v it holds that
c(σ) ≤ c(σ′).

A grid path planning problem is a tuple P =
(G,ustart ,ugoal), whereG is a grid, ustart is the initial ver-
tex, and ugoal is the goal vertex. A solution (resp. optimal
solution) for P overN is a path (resp. optimal path) overN
from ustart to ugoal .

64



The 2k Neighborhood

The 2k neighborhood, denoted as N2k , generalizes the 4-
and 8-connected neighborhoods. N2k is defined in terms of
its first-quadrant moves. The first quadrant moves of N2k ,
for k ≥ 2, are denoted by Qk−2. Finally, Qi, is defined in-
ductively. We start off by defining the quadrant for N4 as
Q0 = 〈(0, 1), (1, 0)〉. Then, intuitively, we generate Qi+1

from Qi by inserting a new move between each pair of
adjacent moves of Qi. Formally, if Qi = 〈a0, . . . ,an〉,
then Qi+1 = 〈a0,b0,a1,b1, . . . ,an−1,bn−1,an〉, where
bj = aj + aj+1. Thus Q1 = 〈(0, 1), (1, 1), (1, 0)〉, Q2 =
〈(0, 1), (1, 2), (1, 1), (2, 1)(1, 0)〉, and so on. Finally, we de-
fine N2k = {(`x, `′y) | (x, y) ∈ Qk−2, `, `

′ ∈ {−1, 1}}.
Figure 2 shows the first five 2k-neighborhoods. Two differ-
ent moves in u,w ∈ N are adjacent iff there is no move in
N different from u and v that is contained by them.

Given an obstacle-free grid, Rivera, Hernández, and
Baier (2017) prove the following result.

Theorem 1 (Rivera, Hernández, and Baier 2017)
Let u be a vertex and let v and w be the adjacent moves in
N2k that contain u. Then the cost of an optimal path from
origin to u is α‖v‖ + β‖w‖, where α and β are such that
u = αv + βw.

Henceforth we denote the cost of an optimal path from
origin to u as h2k(u). Theorem 1 implies the following al-
gorithm for computing h2k(u). First, find two consecutive
moves v,w ∈ N2k that contain u. Then, find α and β such
that u = αv + βw; this step requires solving a system of
two linear equations and both solutions, α and β, are pos-
itive integers (Rivera, Hernández, and Baier 2017). Finally,
return α‖v‖+ β‖w‖.

In the procedure described above, solving for α and β
can be done in constant time, but we require an efficient
function for finding v and w if we aim at computing h2k
quickly. Hormazábal et al. (2017) present an iterative algo-
rithm to compute h2k(u), that efficiently computes v and
w. We present this procedure here because it is relevant
to one of the proofs below (Lemma 9). The main idea is
that h2k can be computed by carrying out a sequence of
factorizations. Thus to compute h2k(7, 9) we first factor-
ize (7, 9) as 7(1, 0) + 9(0, 1); observe that this factoriza-
tion defines an optimal path from (0, 0) to (7, 9) on the 4-
connected neighborhood. Now, to obtain an optimal path
in the 8-connected neighborhood, we re-factorize the pre-
vious expression as 7(1, 1) + 2(0, 1); observe that to get
this factorization we take as many moves among (1, 0) and
(0, 1), and add them together to get (1, 1). Whenever we
do this, one move of the previous factorization disappears
from the expression, while another move in the next neigh-
borhood appears. Furthermore, after i factorization steps, the
two pairs in the expression are consecutive moves in N2i+1 .
Therefore, we can repeat this process as many times as we
want to get optimal paths over N2k for increasing k. For
the 16-neighborhood we obtain 5(1, 1) + 2(1, 2); for the 32-
neighborhood, 3(1, 1) + 2(2, 3); for the 64-neighborhood,
(1, 1) + 2(3, 4); for the 128-neighborhood, (4, 5) + (3, 4);
for the 512-neighborhood, (7, 9). Hormazábal et al. (2017)

proved this procedure is correct. Algorithm 1 shows a pseu-
docode.

Algorithm 1: A general distance function for N2k

1 function distance(x, y, k)
2 l← (1, 0)
3 r← (0, 1)
4 repeat k − 2 times
5 if x > y then
6 r← r+ l
7 x← x− y

8 else
9 l← r+ l

10 y ← y − x

11 return x‖l‖+ y‖r‖

Any-Angle Grid Path Planning
Over the any-angle neighborhood, denoted below as Nany,
any-angle moves are possible, and the agent can move
through any legal point within the limits of the grid. If the
grid isN ×M , we say that (x, y) is within the bounds of the
grid if x ∈ [0, N ] and y ∈ [0,M ]. We re-define when m is
applicable in v by replacing (APP1) above by:

(APP1) v + m is within the bounds of the grid.

The rest of the definitions remain the same. Whenever we
have a grid path planning problem P , we can define an
equivalent any-angle path planning problem, by simply set-
ting the initial and final points as in P . When both the ini-
tial point and the final point correspond to the corner of a
cell, optimal Nany paths have an interesting property: they
are generated by sequences of integer moves, that is, where
each move is such that both the X- and Y-coordinates are
integer. This is because these paths are taut, that is, they are
concatenations of straight lines, where ‘breaks’ occur at the
corners of obstacles (e.g., Oh and Leong 2017).

Main Results
We proceed to present the main results of this paper. For that,
we must establish what we mean by a suboptimality bound.
Assuming that our path planning problem is P , let σ∗any be
an optimal solution for P overNany, and let σ∗k be an optimal
solution for P over N2k , our objective is to find an upper
bound for c(σ∗k)/c(σ∗any). For setting (1), when the vertices
are placed at the corners of cells, the following holds.

Theorem 2 Let P be a path planning problem where ver-
tices are placed at the corners of grid cells. Let σ∗k and σ∗any
be optimal paths for P over, respectively, N2k and Nany.
Then, c(σ∗k)/c(σ∗any) is less than or equal to:

Γk =

√
2
√

(k − 2)2 + 1(
√

(k − 2)2 + 1− (k − 2))

We remark two important aspects of the above theo-
rem. First we observe the bound of Theorem 2 equals
1 + 1

8k2 + O
(

1
k3

)
as k tends to infinity, thus the ratio ap-

proaches to 1 with speed quadratic in k. Second, notice
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that the above bound is tight in the sense that we can find
problems Pn such that their ratio c(σ∗k)/c(σ∗any) is as close
to the bound of Theorem 2 as desired. Indeed, consider
a grid without obstacles, initial state (0, 0), and goal state
(n, bn

√
(k − 2)2 + 1 + (k − 2))c). Then in theN2k neigh-

borhood the optimal path is given by performing n times the
move (1, k−2) and bn

√
(k − 2)2 + 1+(k−2))c−n times

the move (0, 1). It can be check that as n grows the ratio
c(σ∗k)/c(σ∗any) approaches the value given in Theorem 2.

For setting (2), where the vertices are placed at the center
of the cells, the following result is established.

Theorem 3 Let P be a path planning problem where ver-
tices are placed at the centers of grid cells. Let σ∗k and σ∗any
be optimal paths for P over, respectively, N2k and Nany.
Then, c(σ∗k)/c(σ∗any) is less than or equal to:

Γcenter
k =

{
6/(2 +

√
2) k = 2

3
√

2− 3 k ≥ 3
(2)

For this setting, Theorem 3 is also tight. Figure 6 shows
two path problems attaining the bounds of Theorem 3.

Useful Properties of N2k

In this section we provide some simple yet useful properties
of N2k neighborhoods that feature in the proofs of Theo-
rems 2 and 3. We begin with the following property of adja-
cent moves in N2k .
Proposition 4 Let u and v be two adjacent moves of Qi,
for any i ≥ 0. Then |det(u,v)| = 1.
Proof: The proof is by induction on i. For the base case,
i = 2, we have that |det((1, 0), (0, 1))| = 1. For the induc-
tive step, assume the result is true for i ≥ 2 and let v1 and
v2 be two adjacent moves inQi+1. Since v1 and v2 are ad-
jacent, at least one of them was inQi. Assume v1 ∈ Qi (the
other case is analogous). Then we get v2 = v1 + v3 where
v1,v3 ∈ Qi, and thus:

|det(v1,v2)| = |det(v1,v1) + det(v1,v3)|
= |0 + det(v1,v3)| = 1.

�

A graphical proof of the previous proposition exists where
we interpret det(u,v) as the area of the quadrilateral defined
by u and v and show that move u + v, along with either u
or v, define two new quadrilaterals with the same area as the
original one.

The following property is straightforward from Proposi-
tion 4.
Proposition 5 Let α be the angle between two adjacent
moves u and v from N2k , then sin(α) = 1

‖u‖‖v‖ .

The following result is straightforward from the definition
of Qi.
Proposition 6 For every i, if u ∈ Qi, then ‖u‖ ≥ 1.

The following property shows that every move that cannot
be expressed as a multiple of another eventually appears in
a 2k neighborhood.

Proposition 7 Let p and q be relative primes. Then there
exists an r such that (p, q) ∈ N2r .

Proof: Let αiui + βivi be the factorization at iteration i of
Hormazábal et al.’s algorithm when computing the heuris-
tic for (p, q). If αi ≤ βi, at the next iteration, αi+1 = αi

and βi+1 = βi − αi. When αi > βi, symmetrical equations
can be written. From this, we observe that max{αi, βi} >
max{αi+1, βi+1} unless min{αi, βi} = 0, in which case
we have max{αi, βi} = max{αi+1, βi+1}. We conclude
that at some iteration, the factorization stabilizes in the form
αu, for some α and some u. But since p and q are prime rela-
tives, then the factorization stabilizes at (p, q), which implies
(p, q) is a move of N2r , for some r. �

Suboptimality Bound for Obstacle-Free Grids
Before finding suboptimality bounds in full generality, in
this section we focus on an simpler problem. Namely, given
a vertex, we find an upper bound for the ratio between the
cost of an optimal N2k path and an optimal Nany path to-
wards such a vertex over an obstacle-free grid.

Let u = (p, q) be a vertex. We want to find an upper
bound for h2k(u)/‖u‖. To find such a bound, we will inter-
pret this problem as an optimization problem. Specifically,
we want to maximize h2k(u)/‖u‖. Note that this optimiza-
tion problem is an integer program. Instead of solving such
an integer program, we solve its relaxed version; specifi-
cally, one in which p and q are allowed to take real values.
By obtaining a solution to such a (relaxed) program, we ob-
tain an upper bound for h2k(u)/‖u‖.

An important observation is that the definition of h2k(u)
depends on the two adjacent moves in Qk−2 that contain
u. The following result establishes an upper bound that de-
pends on those two moves.

Lemma 8 Let u be a vertex of a obstacle-free grid. Let v
and w be adjacent moves in N2k that contain u and let
α be the angle between v and w. Then, h2k(u)/‖u‖ ≤
2 sin(α/2)/ sin(α).

Proof: Finding an upper bound is equivalent to finding a
maximum for h2k(u)/‖u‖, where u ∈ N2. Let us consider
the relaxation of such an integer program in which u ∈ R2

with u = (p, q). The problem then is reduced to finding a
maximum for ratiov,w, defined as

ratiov,w(u) = (α1‖v‖+ α2‖w‖)/‖u‖ ,

where α1 and α2 are positive integers such that α1v +
α2w = u. We can express the same quantity in terms of
m = p/q in the following way:

ratiov,w(m) =
(wy −mwx)‖v‖+ (mvx − vy)‖w‖√

m2 + 1
.

(3)
Now we find the value of m, m+, that maximizes Equa-

tion 3 by differentiation, obtaining

m+ =
vx‖w‖ −wx‖v‖
wy‖v‖ − vy‖w‖

.
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Then, replacingm+ in Equation 3 we obtain its maximum
value as

ratio+v,w =
√

2‖v‖‖w‖
√

1− v ·w
‖v‖‖w‖

, (4)

where v · w = vxwx + vywy represents the dot product
between v and w. Using that v ·w = ‖v‖‖w‖ cos(α), the
trigonometric identity 1−cos(α) = 2 sin2(α/2), and Propo-
sition 5, we obtain that

ratio+v,w = 2 sin(α/2)/ sin(α). (5)

�

Lemma 8 gives us an upper bound for h2k(u)/‖u‖ that,
unfortunately, depends on the moves of N2k that contain
u. Below, in Theorem 10, we obtain a bound that is inde-
pendent of such moves. Because the bound of Lemma 8,
2 sin(α/2)/ sin(α), is non-decreasing with α on the inter-
val [0, π/2], we know that the ratio is maximized when u is
contained by the (adjacent) moves from N2k that form the
largest angle. A very interesting fact about N2k is that, for
every k, the first two (or last two) moves of a quadrant are
those that form the largest angle (this can be observed in
Figure 2). This is what Lemma 9 formally establishes.

Lemma 9 For any i ≥ 0, let v0,v1, . . . ,vn be moves such
that Qi = 〈v0,v1, . . . ,vn〉. Let αj be the angle between
vj and vj+1, for every j ∈ {0, . . . , n − 1}. Then, α0 =
max{α0, . . . , αn−1}.
Proof: By induction over i, we prove a stronger result.
Namely that:

(R1) ‖v1‖ ≤‖vk‖, for every odd k ∈ {0, . . . , n}.
(R2) α0 ≥ αk for every k ∈ {0, . . . , n}.

For the base case (i = 0), both (R1) and (R2) hold. Now
we assume both (R1) and (R2) hold for Qi, and we prove
they hold also for Qi+1. Let

Qi+1 = 〈v0,w0,v1,w1, . . . ,wn−1,vn〉.

First we prove that (R1) holds forQi+1. This is equivalent
to proving that‖w0‖ ≤‖wk‖, for every k ∈ {0, . . . , n− 1}.
Because w0 = v0 + v1 and wk = vk + vk+1:

‖w0‖2 =‖v0‖2 +‖v1‖2 + 2v0 · v1, (6)

‖wk‖2 =‖vk‖2 +‖vk+1‖2 + 2vk · vk+1. (7)

In addition,

v0 · v1 =‖v0‖‖v1‖ cosα0, (8)
vk · vk+1 =‖vk‖‖vk+1‖ cosαk. (9)

From the inductive hypothesis, α0 ≥ αk, then:

cosα0 ≤ cosαk. (10)

One number among k and k + 1 is odd. Without loss of
generality, we assume that k + 1 is odd. From the inductive
hypothesis:

‖v1‖ ≤‖vk+1‖ . (11)

Moreover, given that‖v0‖ = 1 and Proposition 6, we have
that:

‖v0‖ ≤‖vk‖ . (12)
Using (6)–(12), we obtain ‖w0‖ ≤ ‖wk‖, for every k ∈

{0, . . . , n− 1}, which proves that (R1) holds in Qi+1.
Let β2i be the angle between vi and wi, and β2i+1 be the

angle between wi and vi+1, for every i ∈ {0, . . . , n − 1}.
To prove that (R2) holds in Qi+1, we need to establish that
β0 ≥ βk, for every k ∈ {0, . . . , 2n− 1}.

Assume by contradiction that for some i ∈ {0, . . . , 2n −
1}, β0 < βi. We have two cases: i is even, and i is odd.
Here we show the proof for the first case only; the proof
for the second is analogous. Because the angle between two
adjacent moves is on the interval [0, π/2] and the function
sin is non-decreasing in that range, sin(β0) < sin(βi). From
Proposition 5:

1

‖v0‖‖w0‖
<

1

‖vi‖‖wi‖
.

Since‖v0‖ = 1, we obtain that‖w0‖ >‖vi‖‖wi‖. Because
of Proposition 6,‖vi‖ ≥ 1, and hence‖w0‖ >‖wi‖, which
contradicts (R1). Thus by contradiction, we have established
that (R2) holds. �

Theorem 10 Let P be a path planning problem on an
obstacle-free grid. Then the ratio between the costs of the
optimal solutions over N2k and Nany is upper-bounded by:

Γk =

√
2
√

(k − 2)2 + 1(
√

(k − 2)2 + 1− (k − 2))

Proof: The bound of Lemma 8 is non-decreasing with α
on the interval [0, π/2]. By Lemma 9 the maximum angle
between any two consecutive moves of N2k is the angle be-
tween the first and the second moves in Qk−2. Moreover, it
is easy to see that the second move in Qk−2 has the form
(1, k − 2). By substituting v = (0, 1) and w = (1, k − 2) in
Equation (4) we obtain the desired result. �

At the start of this section we focused on the case which
vertices were placed at the corners of grid cells to avoid anal-
ysis over non-integer vertices. However, the suboptimality
bound for the case in which vertices are placed on the cen-
ters of grid cells is the same bound that we just obtained.
By adding (1/2, 1/2) to every vertex, we are in the case in
which the search graph has vertices are placed at the center
of grid cells, and every proof still holds.

Suboptimality Bound for Grids with Obstacles
In this section we give a proof of Theorems 2 and 3 in full
generality, that is, for grids with obstacles.

Vertices Placed at the Corners of Grid Cells
Let us focus on the case in which vertices are placed on the
corners of the grid cells. Our proof is inspired by a technique
proposed by Bailey et al. (2011) and its main idea is as fol-
lows. We show how to construct a path σf

k over N2k which
“follows” σ∗any in the sense that it only penetrates the cells
penetrated by σ∗any (see Figure 3 for some graphical exam-
ples). Observe that σ∗any is a concatenation of straight lines
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Figure 3: Optimal paths over a 32-, 16-, 8-, and 4-connected neighborhood that follow an any-angle path. Gray grid cells are
those visited by the any-angle path.

which in turn are optimal paths σ∗any,0σ
∗
any,1 . . . σ

∗
any,n over

Nany between each vertex where σ∗any ‘breaks’. We will cre-
ate σf

k generating an optimal path σf
k,i for each σ∗any,i and

then we will use Theorem 10 to get a suboptimality bound
for each one of these straight lines, which finally will give
us a suboptimality bound between σf

k and σ∗any .
Lemma 13, below, is the main technical part of the proof.

It shows that if we take an optimal path σ∗any from (x1, y1)
to (x2, y2) over Nany where (x2, y2)− (x1, y1) = (p, q) are
such that (p, q) is a move of some neighborhood, we can cre-
ate a path σf

k overN2k which follows σ∗any by reversing the
process carried out to compute the heuristic for (p, q). Recall
that to obtain the heuristic for any vertex u, one carries out
a sequence of factorizations that ends with u or with a mul-
tiple of a single move ofN2k , for some k. See Figure 3 for a
graphical illustration. We conclude that by reversing the fac-
torization (a process we decided to name as decomposition),
we actually obtain a N2k path for any value of k we aim at.

Before we formalize our result, we prove an intermediate
result that says that if we take a trajectory of two adjacent
N2k moves v1 and v2, we will not visit more cells than those
visited by v1 + v2.

Lemma 11 Let v1 and v2 be two adjacent moves of N2k

and u be any vertex. Then each cell visited by the path gen-
erated from u by applying v1v2 is also visited by the path
generated from u by applying v1 + v2.

Proof: Our proof is by contradiction. Suppose v1 and v2 are
adjacent moves of some neighborhood such that the property
does not hold. We know that v1 +v2 is contained by v1 and
v2, and therefore a necessary condition for v1 + v2 not to
visit a cell visited by v1 is that it passes below such a cell, as
we can see in Figure 4 (dark gray filled cell). The existence
of such a cell implies at least one vertex (p in Figure 4) be-
tween v1 and v2. This vertex, however, cannot exist in the
N2k neighborhood; if it did, it would be reached by an inte-
ger combination of v1 and v2, and thus it would not be in
the region shown in the figure. The same contradiction can
be obtained for v2. �

Now we define more precisely what we mean by a decom-
position. First we need a few definitions.

We define the level of a move v, level(v), as k if it is
in N2k but not in N2k−1 . Intuitively, a move has level k if
it appears first in N2k , that is to say, it is the sum of two

�

��

�2

�� � �2

Figure 4: An illustration for the proof of Lemma 11.

adjacent moves in N2k−1 . An important fact to note is that
given any two adjacent moves of N2k , the level of one of
them is k, while the level of the other is lower than k.

A decomposition tree T for a move v is a binary
tree whose nodes are labeled with a move of some 2k-
neighborhood; in particular, the root node is labeled with
v. In addition, if n is a non-leaf node of T labeled with
move w and level(w) = `, then n has two children, la-
beled with moves w1 and w2 such that (1) w1 and w2 are
adjacent in N2`−1 , and (2) w = w1 + w2. Intuitively the
children of a node n are labeled with the moves that ‘cre-
ate’ the move that labels n. As such, if n is labeled with
move w and the labels of n’s children are w1 and w2, then
level(w) = 1 + max{level(w1) + level(w2)}.

If T is a decomposition tree then the level of T ,
level(T ) = maxt∈leaves(T ){level(t)}, is the largest level
of its leaves. Given a move v and a natural k, Algorithm 2
computes a decomposition tree of level k for v.

Lemma 12 Let T be a decomposition tree of level k for a
move v. Then, the leaves of T are labeled with at most two
adjacent moves in N2k .

Proof: If level(v) = k, DecompositionTree can not
continue the decomposition because of its restriction of the
maximum level of its leaves, and returns T , a decomposi-
tion tree with just one leaf node, its root, which satisfies the
property. Now we will prove a loop invariant: at the end of
the body of each while loop of DecompositionTree,
T ’s leaves are labeled with at most two adjacent moves in
N2` . Because of this loop invariant, at the end of the body
of the last while loop, ` = k and T satisfies the property.
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Algorithm 2: Decomposition Tree for v of level k
1 function DecompositionTree(v, k)
2 `← level(v);
3 if ` < k or k < 2 then return failure;
4 T ← Tree with a single node labeled with v as

root;
5 while ` > k do
6 L ← T leaves of level `;
7 foreach n ∈ L do
8 w← label of n;
9 v1, v2 ← Adjacent moves in N2`−1 such

that w = v1 + v2;
10 n1, n2 ← Nodes labeled with moves v1

and v2;
11 Add n1 and n2 to T as children of n;
12 `← `− 1;
13 return T

At the first iteration, L = {n} and l = level(v) >
2. Then, v is “decomposable” and there exist adjacent
moves v1 and v2 in N2`−1 such that v = v1 + v2.
DecompositionTree will be able to add n1 and n2 as
children nodes of n, which satisfies the invariant.

Suppose the property is true at iteration i and let v1 and
v2 be the moves that label the leaves of T . Without loss of
generality assume v1,v2 ∈ N2m , level(v1) < level(v2)
and level(v2) = m, for some natural number m. Then,
at iteration i+ 1, DecompositionTree will decompose
v2 into two adjacent moves in N2m−1 , say v3 and v4. Be-
cause all moves in N2m−1 are also in N2m , 〈v3,v2,v4〉
or 〈v4,v2,v3〉 is a subsequence of Qm−2. Similarly, since
v1 is an adjacent move to v2 in N2m , 〈v1,v2〉 or 〈v2,v1〉
is a subsequence of Qm−2. Then, v1 = v3 or v1 =
v4. Again, without loss of generality assume v1 = v3.
DecompositionTree will decompose each leaf node la-
beled with v2 into two new leaf nodes labeled with v1 and
v4, letting v1 and v4 be the moves that label the leaves of
T . Hence, at the end of the iteration i + 1, the leaves of T
are labeled with at most two adjacent moves in N2m−1 .

Figure 5 shows a graphical example of the output of
DecompositionTree((7, 5), k), with k equal to 7, 6,
5 and 4. It can also be seen as the state of T at each iteration
of DecompositionTree((7, 5), 4). �

Lemma 13 Let p and q be relative primes, and let σ∗any be
an optimal path from origin to (p, q). Moreover, let T be
the decomposition tree of level k for (p, q), and let µ =
m0,m1, . . . ,mn be the sequence of labels of T from left
to right. Finally, let us define σk = v0v1 . . .vn+1, where
v0 = (0, 0) and vi+1 = vi + mi, for every i ∈ {0, . . . , n}.
Then σk is an optimal path between origin and (p, q).
Proof: We prove that: (1) σk is a path, and (2) σk is optimal.
For (1) we know there is some r for which (p, q) ∈ N2r

(Proposition 7). Take now the decomposition tree of level
r−1. Because all moves in the leaves of such a tree are adja-
cent, by Lemma 11 we know that the path generated by these

moves exist because such moves do not visit more cells than
those visited by the original move. If r − 1 is equal to k we
are done proving that σk is a path. Otherwise, we repeat the
same argument but this time with each of the moves obtain
by the previous decomposition. Observe that, in doing so,
we are actually generating the decomposition tree of level k.
For an illustration, see Figure 3. This proves (1), that is that
σk is a path. Now, for (2), we know that the decomposition
tree has at most two adjacent moves labeling its leaves. This
means that σk is optimal, because of Theorem 1. �

With the above results, we proceed to give a proof of The-
orem 2.
Proof of Theorem 2 : Let σ∗any be generated by moves
m∗0m

∗
1 . . .m

∗
n. Without loss of generality, we assume each

of those moves is a pair of the form (p, q), where p and q
are relative primes (otherwise, if any move is a multiple of
another, we split such a move into multiple ones). Now from
Lemma 13, we know each one of these moves can be ‘fol-
lowed’ by a sequence of applicable moves inN2k . Let µi be
the moves inN2k that follow m∗i , and let us call σf

k the path
that is generated by applying such moves. Then by Theo-
rem 10:

c(µi) ≤ c(m∗i )Γk

Summing up over i ∈ {0, . . . , n}, we obtain c(σf
k ) ≤

c(σ∗any)Γk. Finally, the cost of the optimal path σ∗k over
N2k is lower than the cost of σf

k . This allows us to write
c(σ∗k) ≤ c(σ∗any)Γk, our desired result. �

Vertices Placed at the Centers of Grid Cells
Now we focus our attention on the case where vertices are
placed at the center of grid cells. As before, we have a path
planning problem P and optimal solutions σ∗k and σ∗any over
N2k and Nany, respectively. We look for an upper bound for
c(σ∗k)/c(σ∗any). Intuitively, the main difference from the pre-
vious case is that σ∗k cannot ‘touch’ obstacles (because there
are no vertices at their corners), while σ∗any can.

Suboptimality bounds for 4- and 8-connected neighbor-
hoods are known for this case (Bailey et al. 2011); respec-
tively, 6/(2 +

√
2) and 3

√
2 − 3. Bailey et al.’s key idea

is to use the instances shown in Figure 6 as path planning
problems where the bound is given, and then proves such
a ratio cannot be worsened. Then, since bounds for 4- and
8-connected neighborhoods are known, we are interested to
find bounds for 2k-neighborhoods, for every k > 3. We will
prove this bounds are all equal to 3

√
2− 3, the 8-connected

bound. This happens because, intuitively, N2k “can not do
better” in the Bailey et al.’s 8-connected instance.
Proof of Theorem 3 : For k = 2 the proof is straight for-
ward from Bailey et al.’s results. Now, for k ≥ 3 we will
perform an induction over k. For the base case (k = 3),
again, it is straight forward from Bailey et al.’s results. Now,
assume it is true for every k ∈ {3, 4, . . . , n − 1}, we will
prove it is true for k = n.

Assume by contradiction that exists a P path planning
problem where vertices are placed at the centers of grid
cells such that c(σ∗k)/c(σ∗any) > Γcenter

k . Let σ∗k−1 be an

69



�7� 5)

�7� 5)

�4� 3) �3� 2)

�7� 5)

�4� 3) �3� 2)

�1� 1) �3� 2)

�7� 5)

�4� 3) �3� 2)

�1� 1) �3� 2)

�1� 1) �2� 1)

�2� 1)�1� 1)

(a) (b) (c) (d)

Figure 5: Decomposition Trees for the move (7, 5) of levels 7, 6, 5 and 4.

k = 2 k = 3

Figure 6: A worst-case path for 4- and 8-connected grids.

optimal path for P over N2k−1 . σ∗k−1 is not necessarily an
optimal path for P over N2k . Then, c(σ∗k−1) ≥ c(σ∗k) and
c(σ∗k−1)/c(σ∗any) ≥ c(σ∗k)/c(σ∗any) > Γcenter

k . By induc-
tion hypothesis c(σ∗k−1)/c(σ∗any) ≤ Γcenter

k , leading us to a
contradiction. �

Empirical Evaluation
The objective of our empirical evaluation was to compare the
average and maximum experimental suboptimality with our
theoretical (worst-case) suboptimality on instances used in
the literature to evaluate grid path planning algorithms. Be-
cause the most interesting setting is when vertices are placed
at the corners, we focus only on such a case.

We implemented A* for 2k-neighbor grids on top of Uras
and Koenig’s code (2015). We used Anya (Harabor et al.
2016) to compute optimal any-angle solutions. The experi-
ments were performed on a 2.20GHz Intel(R) Xeon(R) CPU
machine with 128GB of RAM.

We calculated the experimental suboptimality of 6, 282
instances of Baldur’s Gate maps (BG), 45, 760 instances
of Random maps (Random), and 39, 460. Both the maps
and the instances were taken from Moving AI repository
(Sturtevant 2012). In Figure 7, we compare average exper-
imental suboptimality (ratio-average) and maximum exper-
imental suboptimality with theoretical suboptimality (ratio-
max), for several values for k. ratio-max is very close to 1
in the three maps, in fact in BG with neighborhood 128 the
ratio-max is exactly 1. In addition, we can observe that the
ratio-average is more close to the theoretical bound when the
neighborhood increases. We conclude that average subopti-
mality of 2k is only about 3% under our theoretical subop-
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Figure 7: Experimental suboptimality compared with the
suboptimality bound.

timality, which indicates that using our theoretical bound to
make practical decisions about what k to use when aiming
at a desired target suboptimality.

Summary and Conclusions

We presented theoretical bounds for the suboptimality of 2k

grid path planning, for any k ≥ 2, and for two relevant cases:
when search vertices are placed at the corners or at the cen-
ters of the cells. When vertices are at the corners, our bound
asymptotically approaches 1 at a rate quadratic in k. When
vertices are at the centers the bound does not approach to
1 as k increases, suggesting that implementations based on
this scheme may not exploit the full potential of 2k neigh-
borhoods. In an experimental evaluation in which we use
standard benchmarks, we show that the average suboptimal-
ity is less than 2% away from our theoretical bound. When
given a target suboptimality, therefore, our theoretical bound
can be used to determine which value of k to use along with
a 2k neighborhood.
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